

Organizers

YUXUAN LIANG

Assistant Professor Hong Kong University of Science and Technology (Guangzhou)

HAO MIAO

Research Assistant Professor Hong Kong Polytechnic University

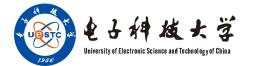
SIRU ZHONG

PhD Student

Hong Kong University of Science
and Technology (Guangzhou)

XIXUAN HAO

PhD Student Hong Kong University of Science and Technology (Guangzhou)



YAN ZHAO

Professor
University of Electronic Science
and Technology of China

QINGSONG WEN

Head of AI Research & Chief Scientist Squirrel Ai Learning

ROGER ZIMMERMANN

Professor National University of Singapore

Outline

- 1 Background & Examples
- **2** Foundation of ST Data
- **3** Why Multimodal ST Data Fusion
- 4 Principle of ST Multimodal Fusion
- **5** Visual/Language Knowledge Transfer
- 6 Conclusions

ACM multimedia

Dublin, Ireland 27-31.10.2025

Big Challenges in Big Cities

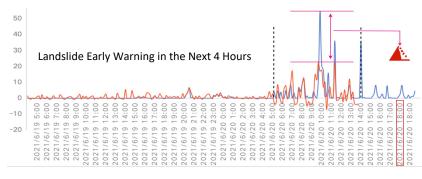
Examples (Data / Analysis / Decision)

Geological disaster response

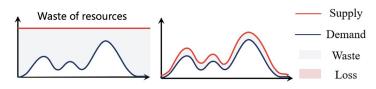
- Current and historical rainfall
- Predicting whether geological disaster will happen in the future
- When to take what precautionary measures

Autoscaling of cloud resources

- Current and historical user load
- 2. Predicting future user load
- 3. Decision on whether to scale up or scale down at future time, and by how much.



Time series: Rainfall



Time series: User Load

Examples (Data / Analysis / Decision)

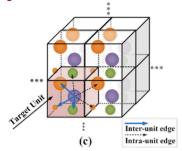
Navigation from a source to a destination

- Current and historical traffic flow
- Predicting traffic flows, identifying congested areas
- Selecting fastest/greenest paths; whether using highways, bridges vs. tunnels

Design new materials/drugs

- Structure of existing materials and their properties
- Predicting properties of unknown material structures
- Potential candidates for new materials that satisfy specific properties

Spatio-temporal Data: Trajectories, Traffic Flows



Molecular structure spatial data: geometric coordinates and topological graphs 6

Outline

- 1 Background & Examples
- **2** Foundation of ST Data
- **3** Why Multimodal ST Data Fusion
- 4 Principle of ST Multimodal Fusion
- **5** Visual/Language Knowledge Transfer
- 6 Conclusions

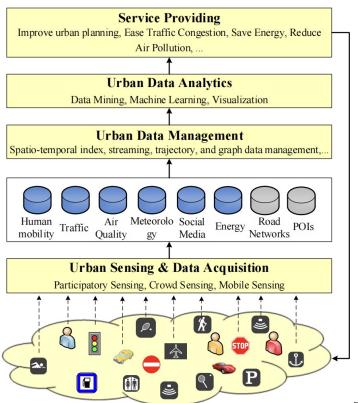
ACM multimedia

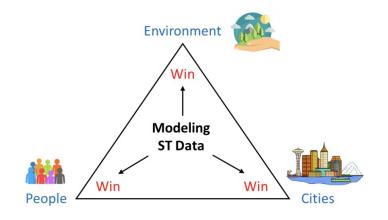
Dublin, Ireland 27-31.10.2025

What is Spatio-Temporal (ST) Data

• ST data refers to data that integrates spatial (location), temporal (time), and eventrelated information, capturing how phenomena change across both space and time.

ST Data Intelligence Framework





Tackle the Big challenges

in Big cities

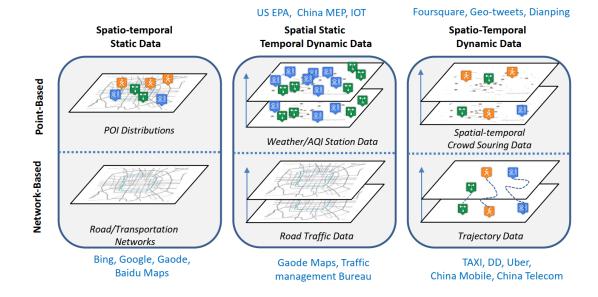
using Big data!

Urban Computing: concepts, methodologies, and applications.

Zheng, Y., et al. ACM transactions on Intelligent Systems and Technology.

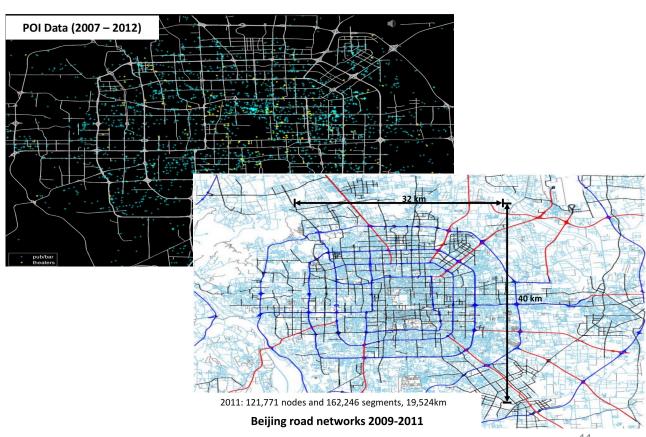
ST Data - Taxonomy

- Spatially and temporally static data
- Spatially static and temporally dynamic data
- Spatially and temporally dynamic data



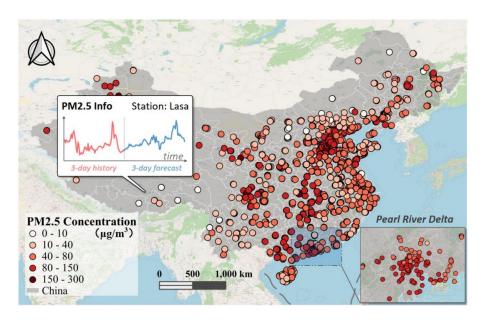
Spatially and Temporally Static Data

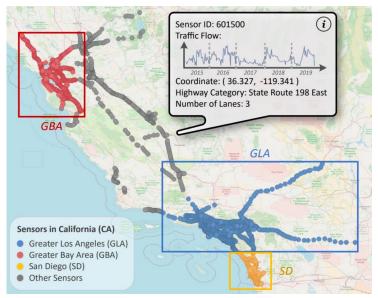
- Points & Locations
- Lines
 - Route, pipeline,
 - Rivers, coast,...
- Graphs
 - Road networks
 - Air lines



Spatially Static and Temporally Dynamic Data

- Usually derived from sensors deployed in different locations.
- Also can be called standard time series and spatial time series.





PM2.5 Concentration Traffic flow

Spatially and Temporally Dynamic Data

- Spatial and temporal values varying in time
 - Moving objects

$$T=p_1
ightarrow p_2
ightarrow \cdots
ightarrow p_n$$
 , $p_i=(\underbrace{a_i,b_i}_{t_i},\underbrace{t_i})$

- Trajectories

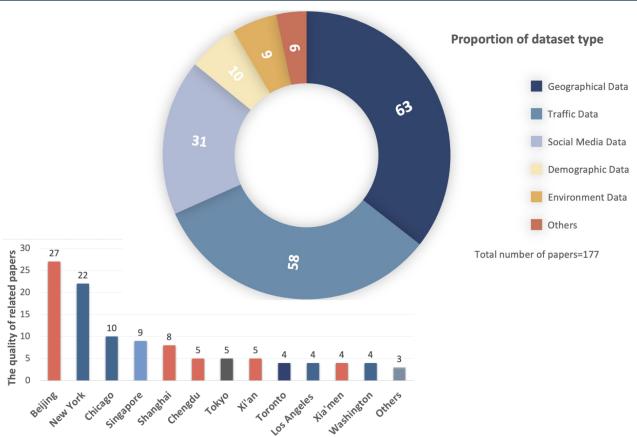
Location (latitude & longitude)

 E.g. Human mobility (travel logs, check-ins, credit card transactions, trajectories of taxis / airplanes / ferries, ...), Animals migration, Natural phenomena.

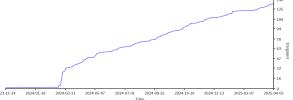


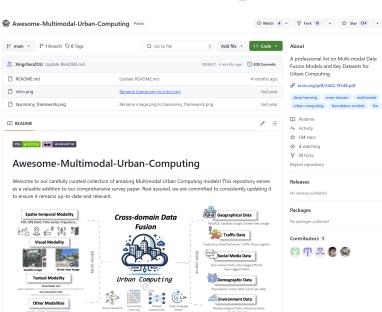
Data Types and Data Sources

- Geographical data
- Traffic data
- Social media data
- Demographic data
- Environment data
- Others



Data Types and Data Sources



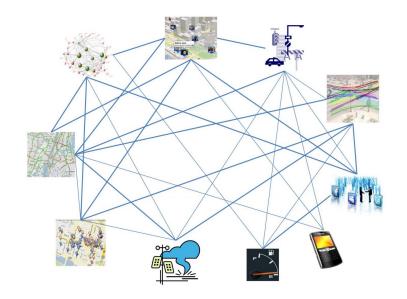


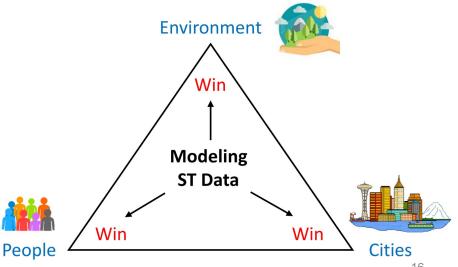
By Citymind LAB, HKUST(GZ). If there are any areas, papers, and datasets I missed, please let me know!

Category	Content	Format	Dataset	Link	Reference
	Satellite Image	Image	ArcGIS PlanetScope Google Earth OpenStreetMap	https://developers.arcgis.com https://developers.planet.com/docs/data/planetscope/ https://developers.google.com/maps/documentation/ https://www.openstreetamp.org/	[186] [154] [116] [337]
	Street-View	Image	Baidu Maps Baidu Map Google Street	https://lbsyum.baidu.com https://lbsyum.baidu.com https://developers.google.com/maps/	[324, 313] [186, 124] [186, 4]
Geographical Data	Image		Tencent Map Tencent Map Service	https://lbs.qq.com/tool/streetview/index.html https://lbs.qq.com/getPoint/	[112]
	POIs	Point Vector	WeChat POIs Baidu Map POIs NYC Open POIs Foursquare Wikipedia POIs AMap Service	https://open.weixin.qq.com https://lopyun.baidu.com https://opendata.cityofnewyork.um/ https://deweloper.fourquare.com/docs/checkins/checkins https://www.wikipedia.org https://bww.wikipedia.org	[277] [154, 172, 175, 110, 313] [170, 272, 20, 366, 288] [20, 381, 13, 42, 107, 116] [386] [10]
			Yelp POIs Dianping POIs Weibo POIs Flickr POIs Bing Map POIs	https://www.yelp.com/developers https://api.diamping.com/ https://open.welbo.com/wiki/API https://www.flickr.com/servicem/developer/api/ https://www.bingampsportal.com	[13, 380, 383] [33, 63] [33, 134, 77] [99] [37]
	Traffic Trajectory	Spatio-temporal Trajectory	Shenzhou UCar Chicago Transportation VEID Taxi Shenzhen NYC Open Taxi Data GeoLife T-Drive Taxi DiDi Traffic Xiamen Taxi Grab-Posisi	https://dxt.ly/DMG/Tzz https://data.typcfhicago.org/ https://github.com/gmol/WB https://github.com/gmol/WB https://github.com/gmol/WB https://github.com/chodgo4/WIL https://cpendata.cityofnewyork.un/how-to/ https://urbam-computing.com/index-883.htm http://urbam-computing.com/index-88.htm https://urbam-computing.com/index-88.htm https://data.mondelay.com/catameta/Srg3919vgi/1 https://gom.un/%y05m	[93] [272, 288, 116] [209, 572] [113, 302] [368, 366] [368, 366] [368, 366] [368, 360] [368, 308, 400, 394, 347] [359, 551, 217, 191] [349, 188, 228, 328, 261] [342, 40, 124, 39]
Traffic Data	Taffic Flow	Spatio-temporal Graph	California-PEMS METR-LA Large-ST MobileBJ TaxiBJ BikeNYC	http://pems.dot.ca.gov https://www.metro.net https://github.com/luxu/77/LargeST https://github.com/fluxu/77/LargeST https://go.su/aNyJTAz https://cithubkenyc.com/	[9, 254] [143, 171] [182] [170, 134, 33] [164, 11, 226, 120, 368, 74] [170, 11, 226, 120]
	Road Network	Spatial Graph	OpenStreetMap US Census Bureau	https://www.openstreetmap.org https://www.census.gov/data.html	[339, 13, 188, 349, 84] [366]
	Logistics	Spatio-temporal Trajectory	LaDe JD Logistics	https://cainiaotechai.github.io/LaDe-website/ https://corporate.jd.com/ourBusiness#jdLogistics	[305] [235]
Social Media Data	Text	Text	Twitter Common Crawl Yelp Reviews Weibo Traffic Police	https://developer.twitter.com/en/docs https://registry.opendata.awe/commoncrawl/ https://www.yelp.com/dataset http://open.welbo.com/davelopers/	[20, 381, 383, 352, 270, 301, 240] [289, 283, 285, 284, 200, 184] [380] [380, 383]
	Geo-tagged Image & Video	Image&Video	YFCC100M NUS-WIDE GeoUGV	https://goo.su/jzaDU https://goo.su/dWPQZcD https://qualinet.github.io/databases/video/	[386, 340, 99] [340, 338] [187]
	Users' Info	Time Series	Jiepang User Check-in Gowalla User Location WeChat Mobility	https://jiepang.app/ http://konect.cc/networks/loc-gowalla_edges/ https://open.weixin.qq.com/	[74] [42, 352] [277]
Demographic Data	Crime	Time Series	NYC Crime	https://opendata.cityofnewyork.us/	[368]
	Land Use	Time Series	Land Use SG Land Use NYC	https://www.ura.gov.sg/Corporate/Planning/Master-Plan https://goo.su/puTuG	[156] [156]
	Population	Time Series	WorldPop	https://www.worldpop.org/	[309, 154, 10]
Environment Data	Meteorology	Time Series	TipDM China Weather DarkSky Weather WeatherNY WeatherChicago Weather Underground DidiSY WD_BJ weather WD_USA weather	https://www.tipdm.org/ https://support.apple.com/en-um/102594 https://opendata.cityofnewyork.um/ https://data.cityofnewyork.um/ https://www.wumderground.com/ https://www.wumderground.com/ https://www.wumderground.com/ https://poo.um/hmHFMA	11781 [349] [272] [272] [272] [342] [112] [102]
	Greenery	Time Series	Google Earth	https://earth.google.com/	[342]
	Air Quality	Time Series	UrbanAir KnowAir	https://goo.su/hfzNB53 https://github.com/shuowang-ai/PM2.5-GNN	[399, 396, 392] [286, 346, 370, 318]

Why ST Data Mining

- Modeling ST data is the foundation of real-world applications, creating win-win-win solutions that improve the environment, human life quality, and city operation systems.
- ST data are anywhere, connecting with each other.





Outline

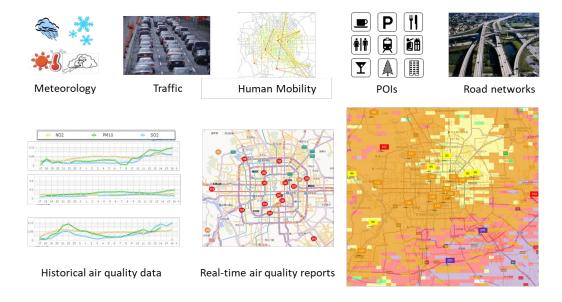
- 1 Background & Examples
- **2** Foundation of ST Data
- **3** Why Multimodal ST Data Fusion
- 4 Principle of ST Multimodal Fusion
- **5** Visual/Language Knowledge Transfer
- 6 Conclusions

ACM multimedia

Dublin, Ireland 27-31.10.2025

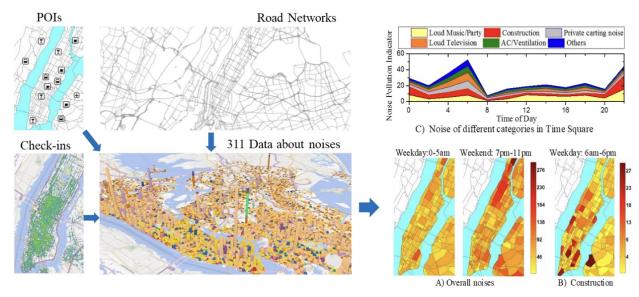
Why Multimodal ST Data Mining

- Single-modality information fails to address the complexity of real-world scenarios.
- <u>Example</u> 1: Air Quality Inference Unlock the power from multiple (sparse) data across different domains



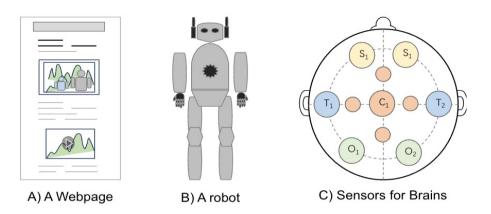
Why Multimodal ST Data Mining

- Single-modality information fails to address the complexity of real-world scenarios.
- <u>Example</u> 2: Noise Diagnosis Unlock the power from multiple (sparse) data across different domains



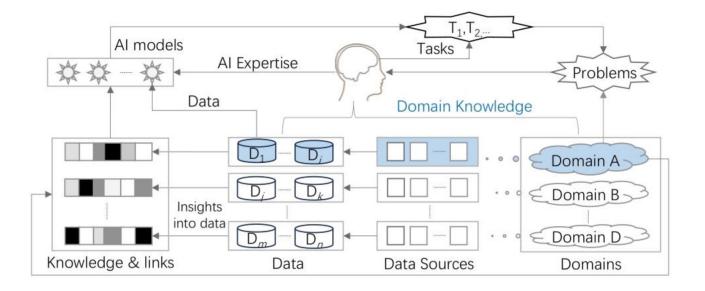
Research Gap

- Multimodal ST Data Mining vs Traditional Multimodal Learning
- Multimodal ST Data Mining ⇔ Cross Domain Knowledge Fusion
- Existing research focuses on single-domain multimodal fusion, data are originally aligned (collected for same problem), which fails in cross-domain ST scenarios.



What is Cross-domain Data Fusion

- Data from different domains, collected for different problems, originally not aligned.
- E.g. Air Quality Inference (history AQI, traffic, land uses, meteorology data)

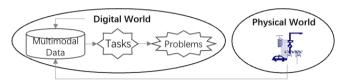


ST Multimodal Learning is Future

 Current research on multimodal learning is mainly focus on solving problems in digital world (stage a & b), rarely stepping into the physical world (stage c).

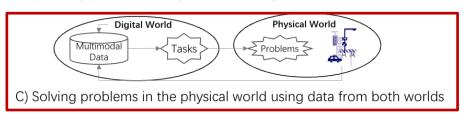
1) Daily Multimodal Apps, Image/Video Generation

A) Solving digital problems using data in the digital world



2) Motion-sensing Game, e.g. Switch

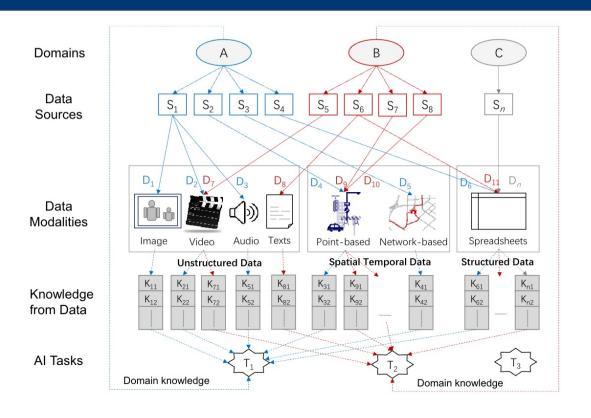
B) Solving problems in digital world using data from both worlds



3) Real World Problems, e.g. AQI

Essential difference between multimodal ML in ST compared to the common multimodal.

ST Multimodal Data Fusion System



Outline

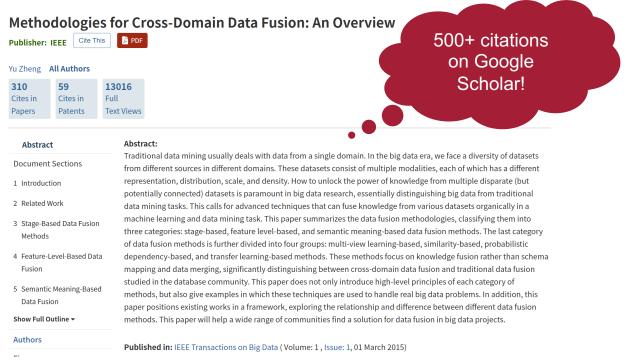
- 1 Background & Examples
- **2** Foundation of ST Data
- **3** Why Multimodal ST Data Fusion
- 4 Principle of ST Multimodal Fusion
- **5** Visual/Language Knowledge Transfer
- 6 Conclusions

ACM multimedia

Dublin, Ireland 27-31.10.2025

Principle of ST Multimodal Fusion

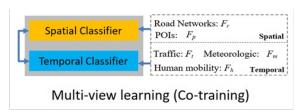
Machine Learning Era

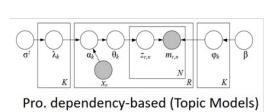


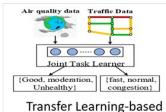
Principle of ST Multimodal Fusion

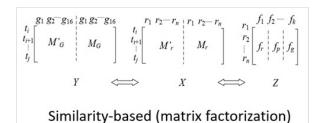
Machine Learning Era

- Stage-based data fusion
- Feature-level-based data fusion
 - Feature concatenation + regularization
 - DNN-based
- Semantic meaning-based fusion
 - Multiple-view-based: like co-training
 - Similarity-based: Coupled matrix factorization
 - PGM-based
 - Transfer learning-based



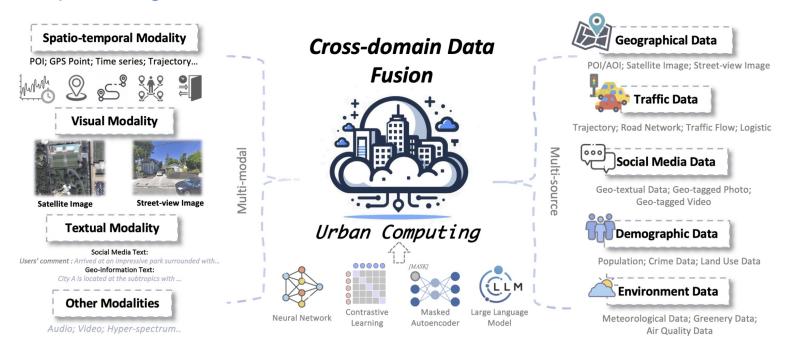




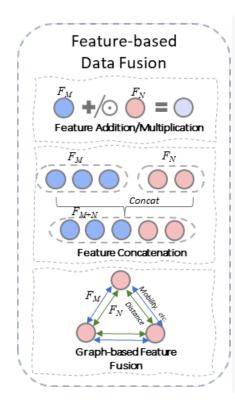


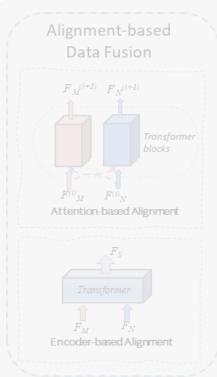
Principle of ST Multimodal Fusion

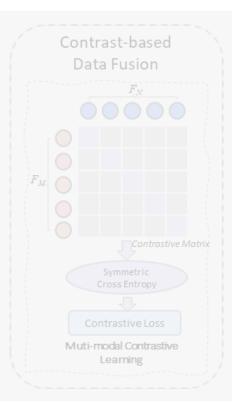
Deep Learning Era

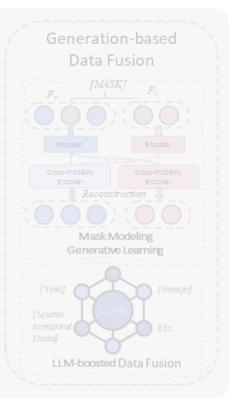


Deep Learning-based Fusion Methods



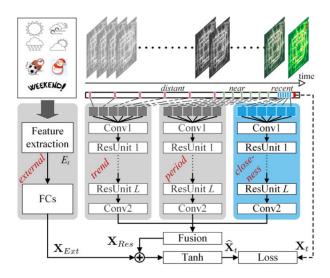






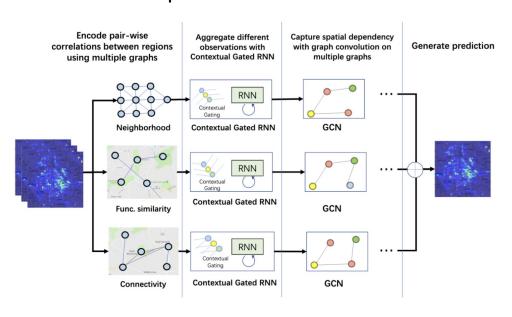
Feature-based Fusion (Simplest!)

- Feature Addition/Multiplication
- Feature Concatenation



Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction, AAAI 2017

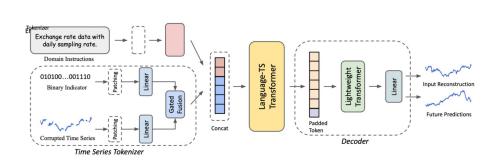
Graph-based Data Fusion

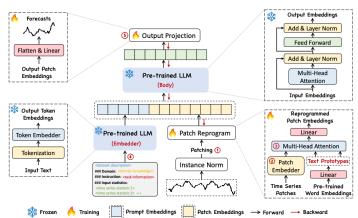


Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting, AAAI 2019

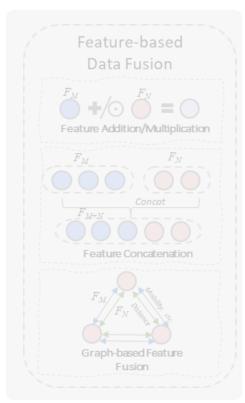
Feature-based Fusion (Simplest!)

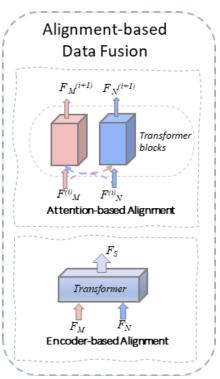
- UniTime (Unified TS Modeling): Directly concatenates TS patch tokens with Text tokens and feeds them into the LLM.
- Time-LLM (end-to-end LLM4TS): Converts TS patch tokens into Text tokens, combines them with prompt embeddings, and feeds them into the LLM.

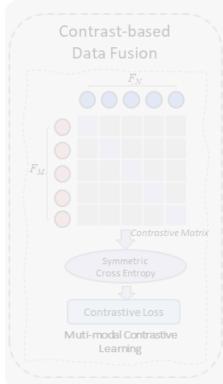


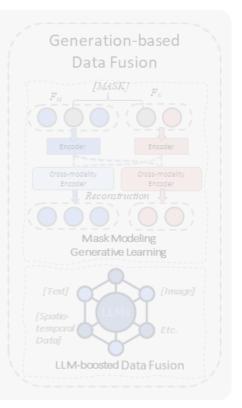


Deep Learning-based Fusion Methods



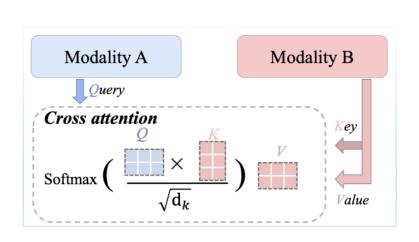


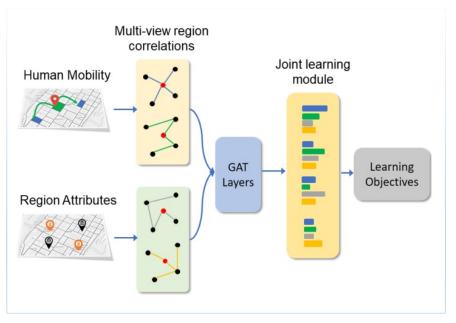




Alignment-based Fusion

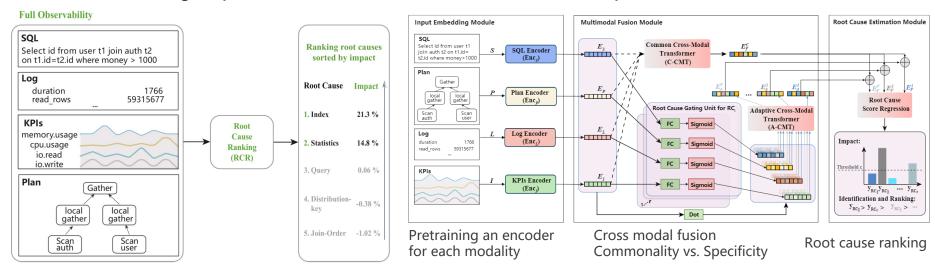
- Based on Cross-Attention mechanism
- Query and Keys (Values) are from different modalities





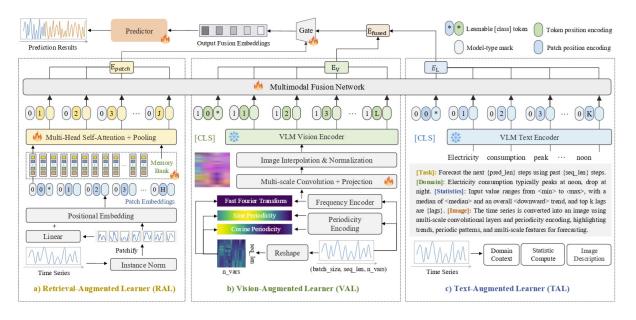
Alignment-based Fusion

- RCRank: Ranking of root causes of slow SQL queries in cloud databases
 - SQL statements, logs, KPIs, and query plans
 - Ranking of potential root causes that result in slow queries

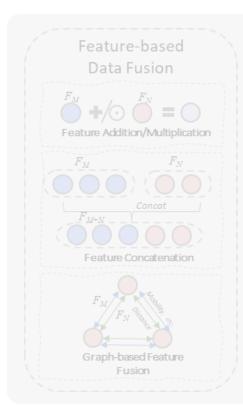


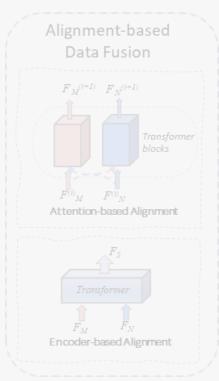
Encoder-based Fusion

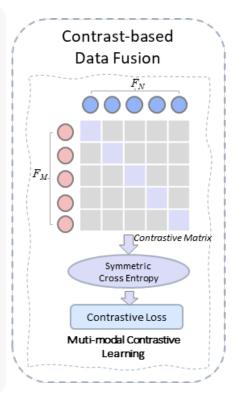
- Token-level concatenation: Unified representations across modalities;
- Usually based on Self-Attention

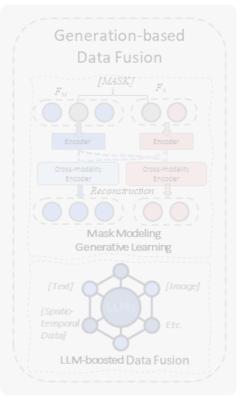


Deep Learning-based Fusion Methods



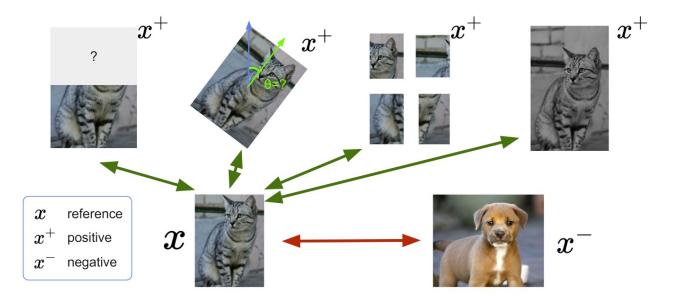






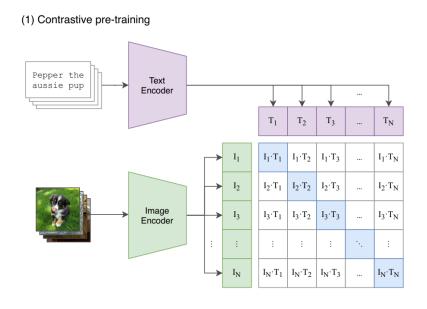
Contrastive Learning

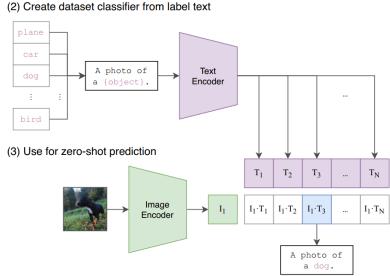
- A representative class of self-supervised learning
- Building negative and positive samples to provide supervision signals



Contrastive Learning

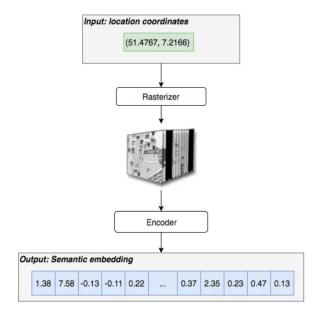
- How to fuse two modalities using contrastive learning?
- The answer is CLIP!

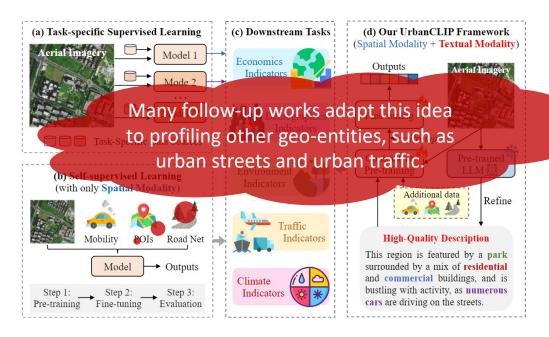




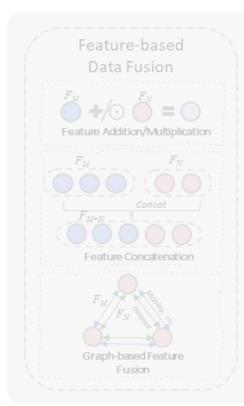
Contrast-based Fusion

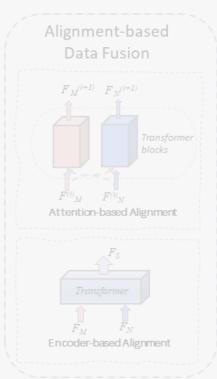
• Urban Contrastive Language-Image Pre-training (UrbanCLIP) is the first framework that integrates the knowledge of text modality into urban region profiling.

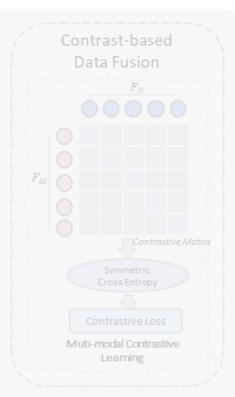


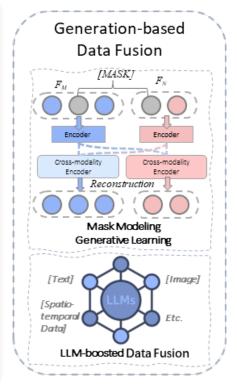


Deep Learning-based Fusion Methods



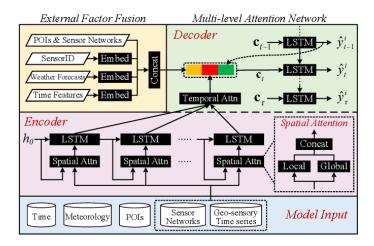




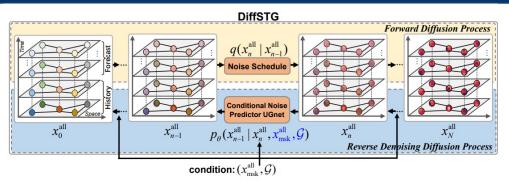


Generation-based Data Fusion

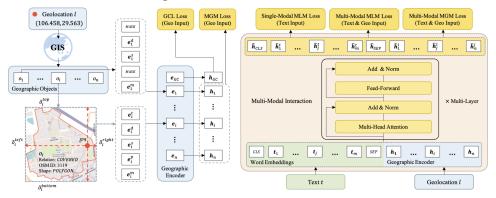
- Autoregression-based fusion
- Masked modeling-based fusion
- Diffusion-based fusion



GeoMAN: Multi-Level Attention Networks for Geo-Sensory Time Series Prediction. IJCAI 2018



DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models. SIGSPATIAL 2023



MGeo: Multi-Modal Geographic Language Model Pre-Training. SIGIR 2023

More Works

Summary Table

							Moda	lity						
				Gen	eral Spatio-temp	oral		V	isual	Te.	xtual			
Category	Method	Data Source	Time series	POI/ Location	Trajectory/ Road network	Mobility	ST events	Satellite image	Street-view image	Social media text	Geo- imformation text	Application	Institution	Ye
	DeepST [363]	*▲*			0							Transportation	Microsoft	2
	ST-ResNet [364]	+ A+#										Transportation	Microsoft	2
	ST-MetaNet+ [218]	+-										Transportation	JD Research	2
	DeepCrime [108]	A **										Social	JD Research	2
	STUKG [278]	A.										Transportation	THU	2
	DeepSTN+ [170]	+-										Transportation	THU	2
	DeepTP [349]	4-4										Transportation	THU	-
	Guo et al. [94]	4-4										Transportation	BUAA	-
	Photo2Trip [386]	**										Transportation	SU/RU/UCA	
	ST-SHN [311]	A.										Public Safety	SCUT/HKU	-
	GeoMAN [162]	A #										General	XDU	-
	Huang et al. [112]											Urban planning	PKU	-
	Liang et al. [164]	4										Transportation	NUS	-
	Balsebre et al. [13]	A										Urban Planning	NTU	-
	Ruan et al. [235]	A-t-										Transportation	NTU	-
	Liu et al. [172]	A .										Economy	HKUST(GZ)	
Feature	PANDA [342]	-5-0-0-2										Public Safety	XMU	-
Based	UVLens [40]	••										Urban Planning	XMU	-
Data		A												-
Fusion	Miyazawa et al. [200]											Transportation	SUSTech	
	NodeSense2Vec [33]	+4										Social	UCF	-
	Keerthi Chandra et al. [134]	+4										Urban Planning	UCF	
	Fu et al. [74]											General	UCF	3
	Liu et al. [184]											Social	Gatech	3
	Yuan et al. [349]	<u>A</u>										Transportation	RMIT	2
	Bai et al. [12]	144										Transportation	Shanghai AI Lab	
	Ke et al. [132]	-3-		•								Transportation	Alibaba	2
	Geng et al. [84]	+										Transportation	Alibaba	2
	Yao et al. [329]	*										Transportation	PSU	-
	Gao et al. [79]	4	•								_	Transportation	SWJTU	2
	DeepMob [249]	44	•	•	•	•						Public Safety	SUSTech	2
	Geng et al. [82]	+▲			•							Transportation	HKUST	- 2
	Xi et al. [309]			•								General	THU	2
	Zhang et al. [368]											General	THU	2
	Yuan et al. [349]	**										Transportation	THU	2
	Yin et al. [339]	**										Urban Planning	NUS	
	GSNet [272]	**										Public Safety	BJTU	
lignment	Hashem et al. [98]	A.										General	NTU	2
Based	TrajGAT [328]	*										Transportation	NTU	
Data	RADAR_[39]	-3-										General	XMU	
Fusion	Wang et al. [287]	A#										General	CSU	
	Tedjopurnomo et al. [261]	-2-										Transportation	RMIT	1
	ERNIE-GeoL [110]	A										General	Baidu	
	SAInf [193]	+ A#										Transportation	JD Research	
	Gao et al. [77]	-1-4										Transportation	SWJTU	
	KnowCL [186]	A++						•	•			Economy	THU	
	Li et al. [154]	A * *										Economy	THU	
Contrast	MMGR [10]	A										General	NTU	
Baed	ReMVC [366]											Urban Planning	NTU	
Data	HMTRL [173]	4										Transportation	UCF	
Fusion		4											Shanghai AI Lab	
	Mao et al. [196]	4										Transportation		
	UrbanSTC [226] UrbanCLIP [323]	A.						•				Transportation General	JD Research HKUST(GZ)	
	SG-GAN [378]	A.										Urban Planning	NUS	3
	ActSTD [354]	A .										Transportation	THU	1
	DiffSTG [299]	***										General	BJTU	
eneration	CP-Route [297]	***									_	Transportation	BJTU	2
Based	G2PTL_[304]			•							•	Transportation	Cainiao	2
Data	DiffUFlow [401]	4-4			•							Transportation	CSU	2
Fusion	DP-TFI [320]	**										Transportation	UESTC	2
	Wang et al. [273]	* *										Urban Planning	UCF	2
	Chattraffc[358]	-2-										Transportation	BJUT	2
	MGEO [61]	A										General	Alibaba	

Outline

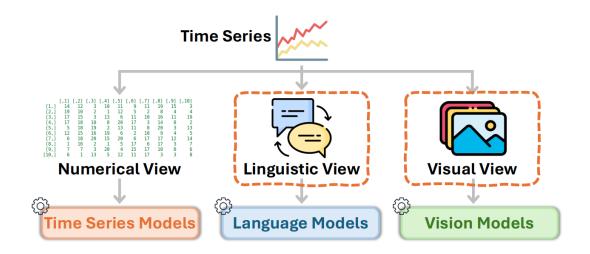
- 1 Background & Examples
- **2** Foundation of ST Data
- **3** Why Multimodal ST Data Fusion
- 4 Principle of ST Multimodal Fusion
- **5** Visual/Language Knowledge Transfer
- 6 Conclusions

ACM multimedia

Dublin, Ireland 27-31.10.2025

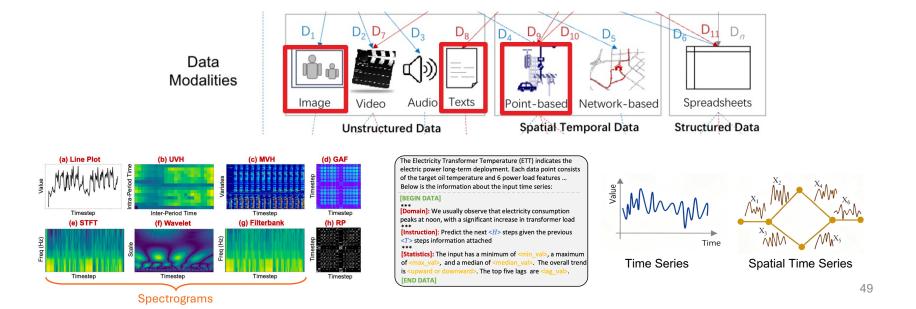
Scope

- We focus on spatially static and temporally dynamic data.
 i.e. standard time series and spatial time series data (e.g. traffic flow, air quality).
- We focus on how vision and language can enhance ST forecasting.



Scope

- We focus on spatially static and temporally dynamic data.
 - i.e. standard time series and spatial time series data (e.g. traffic flow, air quality).
- We focus on how vision and language can enhance ST forecasting.

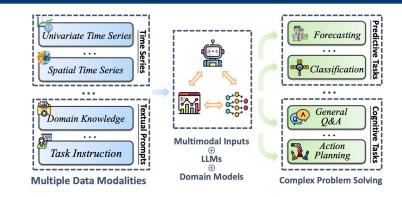


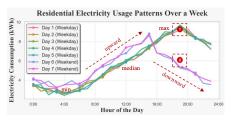
Part 1

Language-enhanced Spatio-Temporal Analysis

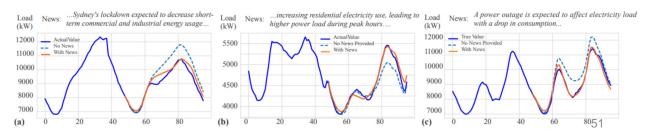
Why Language for ST

- Limitations of traditional methods
 - incomplete information
 - lack of causality
 - poor response to shocks
- Advantages brought by language
 - context provided
 - interpretability
 - robustness





Late Down Early Up ... Steady Short Long Increase [Context]: These are residential electricity usage patterns. [Dataset]: Electricity consumption peaks on weekday evenings, drops during daytime, and reverses on rest days. [Statistic]: The input range from <min> to <max>, with a median of <median>. The overall trend is <unward>.



Challenge

Data heterogeneity

Time-series data are orderly <u>continuous</u> numerical signals, while text is a highdimensional, <u>discrete</u> symbolic expression.

Temporal alignment

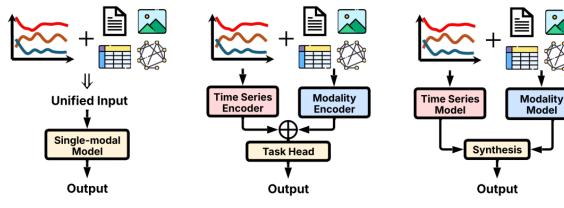
There exists an uncertain <u>lag effect</u> or asynchrony between textual events and peaks in numerical sequences.

Noise and irrelevant context

Compared to the vast amount of daily text, event descriptions truly related to temporal dynamics are extremely <u>sparse</u> and often implicitly expressed.

Cross-modal Fusion

- The process of Integrating heterogeneous modalities (Text, ST Data) in a way that captures complementary information across diverse sources.
- Three stages of fusion: input level, intermediate level, output level

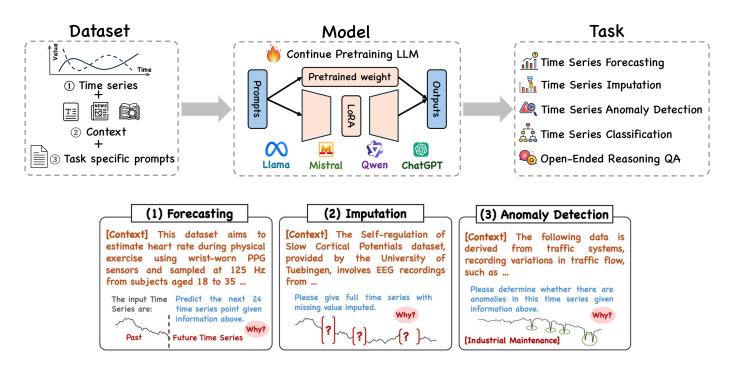


High parameter efficiency
Strong deep feature interaction
Potential modality imbalance
limited flexibility

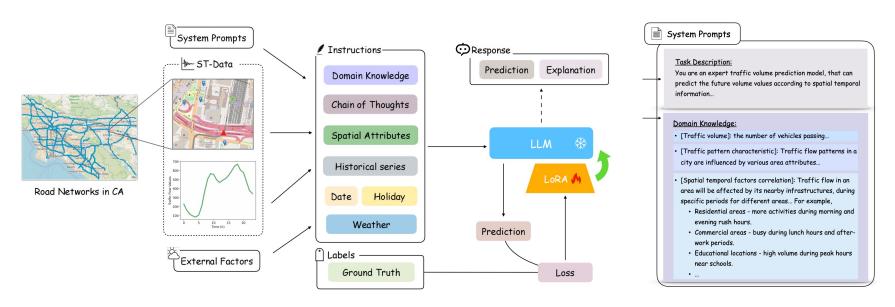
High flexibility
Superior performance
Complex model design High
computational cost

Simple implementation
Strong robustness, Flexibility
Low performance ceiling
Requires modality independence. 53

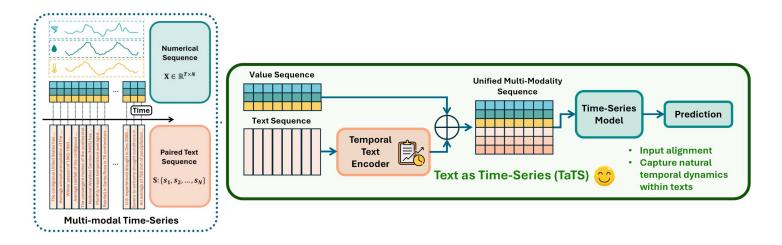
Integrate time series and texts into a unified textual prompt.



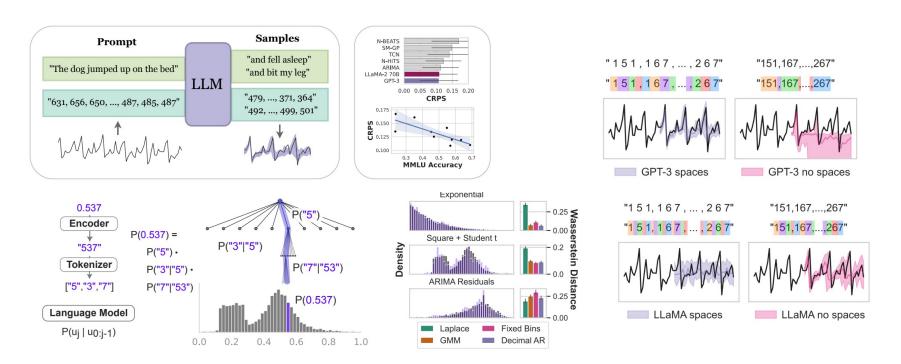
Integrate time series and texts into a unified textual prompt.



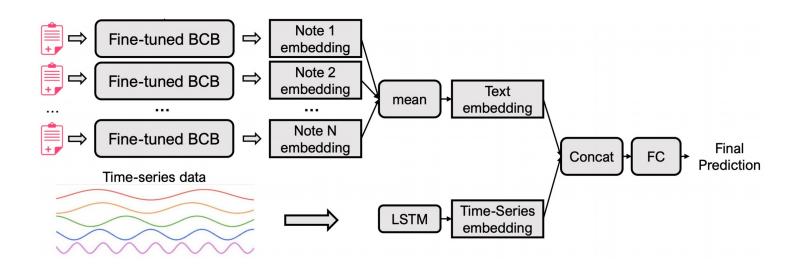
Integrate paired text embedding as an additional variable of time series.



Describe time series as discrete marks, using LLM's autoregressive generation ability

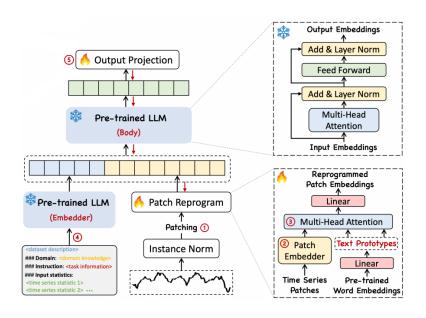


• Simple aggregations (e.g., mean, addition, concatenation, etc.) of time series embedding and text embeddings.

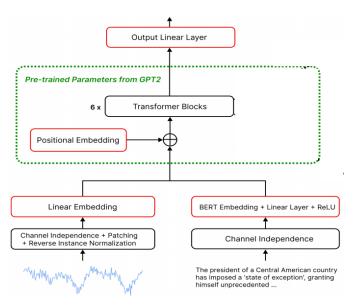


- The fusion of modality embeddings is usually followed by alignments.
- Alignment is the process of preserving inter-modal relationships and ensuring semantic coherence when integrating different modalities into a unified framework.
 - self-attention, cross-attention, gating
 - graph convolution
 - learning objectives

 Self-attention: a joint and undirected alignment across all modalities by dynamically attending to important features.

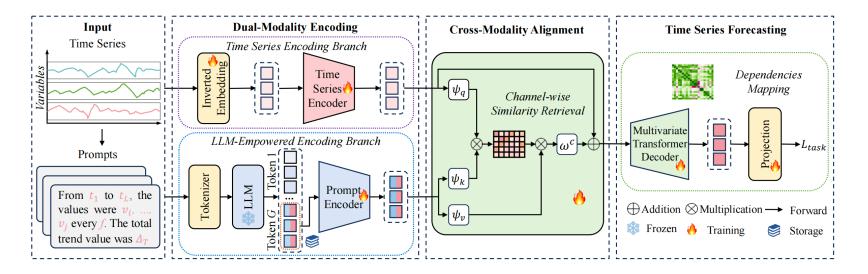


Time-LLM: Time Series Forecasting by Reprogramming Large Language Models, In ICLR, 2024.

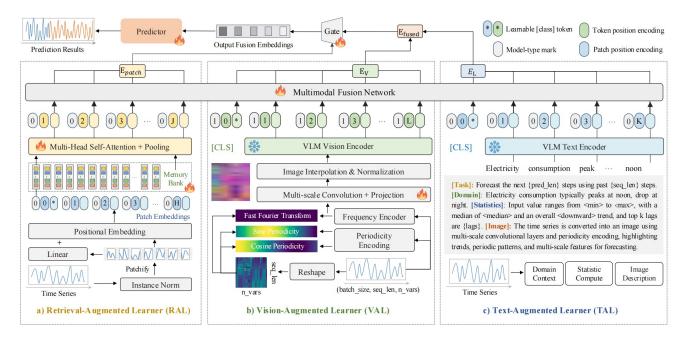


GPT4MTS: Prompt-Based Large Language Model for Multimodal Time Series Forecasting, In AAAI, 2024.

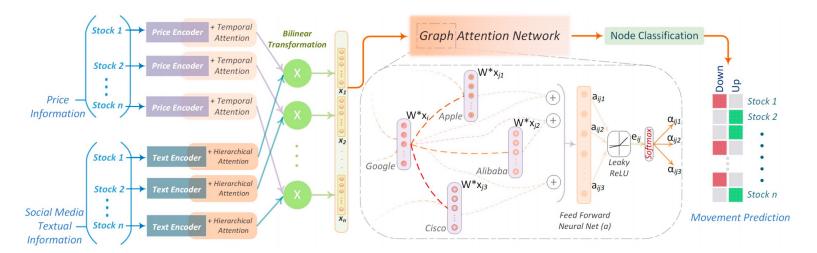
Cross-attention: time series serves as the query modality to get contextualized by other
modalities, providing a directed alignment that ensure auxiliary modalities contribute
relevant contexts while preserving the temporal structure of time series.



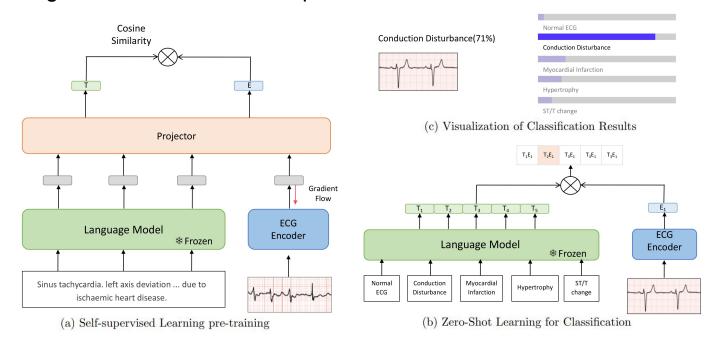
 Gating: a parametric filtering operation that explicitly regulates the influence of time series and other modalities on the fused embeddings.



 Graph convolution: The topological structure from external contexts can be used for alignment. It explicitly aligns representations with relational structures, enabling contextaware feature propagation across modalities.

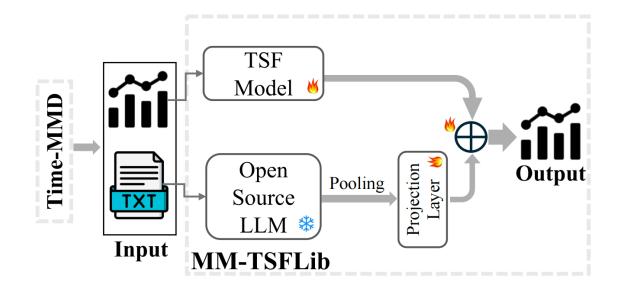


 Contrastive Learning: maximize the cosine similarity between paired multi-modal embeddings and minimize that of unpaired ones.



Output Level Fusion

Project multiple modality outputs onto a unified space.



Summary

- ✓ Leveraging LLMs' reasoning capabilities
- Straightforward to integrate additional textual data
- ✓ Potential to provide explanation
- Model long time series
- Model multivariate time series (e.g., spatiotemporal data)
- Perform long-term forecasting

Part 2

Vision-enhanced Spatio-Temporal Analysis

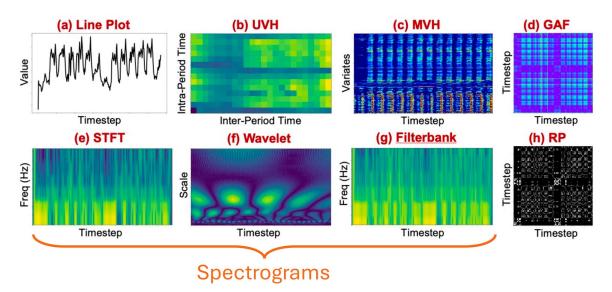
Motivation of Vision for TS

- Compared to LLM, vision model has more advantages:
 - Using continuous pixel sequences (vs. text's discrete tokens).
 - Supporting multivariate time series (vs. LLM follows channel independence).
 - Compactly encoding long time series (vs. LLM's context length/precision limits).
 - Enabling more intuitive human/system understanding.
- Multimodal LLM perhaps simultaneously integrate the advantages of both.

	Characteristics	Origin	Information
Time series	continuous	physical systems	high redundancy
Image	continuous	physical systems	high redundancy
Text	discrete	human cognitive construct	semantically dense

TS-to-Vision Transformation

There are 8 major time-series imaging methods:



Method	TS-Type	Advantages	Limitations
Line Plot (§3.1)	UTS, MTS	matches human perception of time series	limited to MTS with a small number of variates
Heatmap (§3.2)	UTS, MTS	straightforward for both UTS and MTS	the order of variates may affect their correlation learning
Spectrogram (§3.3)	UTS		limited to UTS; needs a proper choice of window/wavelet
GAF (§3.4)	UTS	encodes the temporal correlations in a UTS	limited to UTS; $O(T^2)$ time and space complexity
RP (§3.5)	UTS	flexibility in image size by tuning m and $ au$	limited to UTS; information loss after thresholding

Line Plot — Intro

Line Plot is a 2D image with time on x-axis, values on y-axis, and a line connecting points.

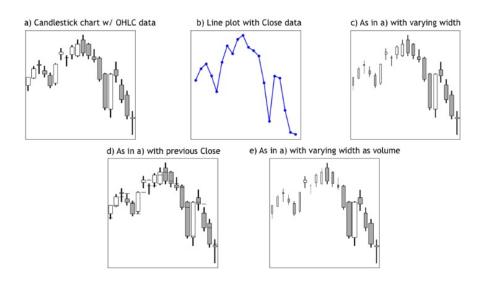
• Ex.1: Line Plot Imaging for Financial <u>Univariate</u> Time Series Classification.

Figure 1: Typical workstation of a professional trader.

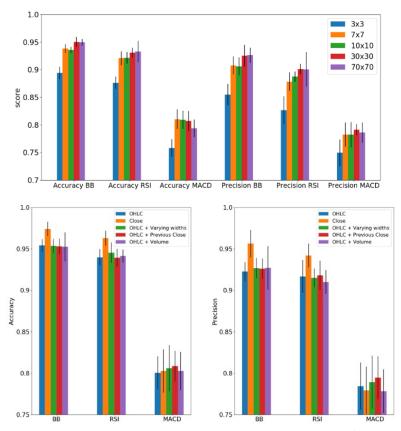
Figure 2: Converting continuous time series to images.

Line Plot — e.g. Univariate TSC

Ablations on Imaging Details and Resolution.

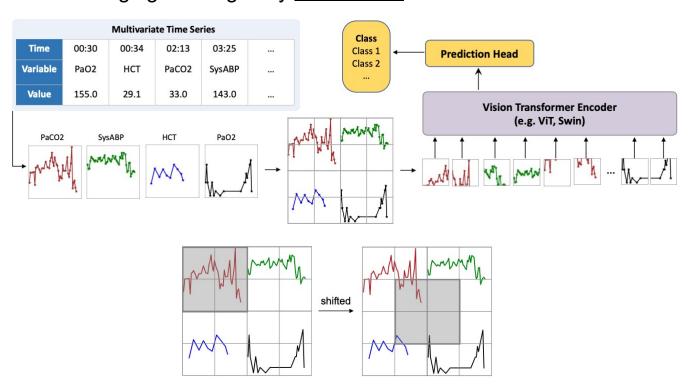


- 1. Simple line plot is better
- 2. Sufficient resolution is important



Line Plot — e.g. Multivariate TSC

• Ex.2: Line Plot Imaging for irregularly Multivariate Time Series Classification.

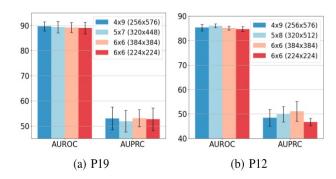


Line Plot — e.g. Multivariate TSC

Ablations on Time Series Imaging Strategies and Details.

Table 3: Ablation studies on different strategies of time series-to-image transformation.

	P	19	P	12		PA	M	
Methods	AUROC	AUPRC	AUROC	AUPRC	Accuracy	Precision	Recall	F1 score
Default	89.2 ± 2.0	53.1 ± 3.4	85.1 ± 0.8	51.1 ± 4.1	95.8 ± 1.3	96.2 ± 1.1	96.2 ± 1.3	96.5 ± 1.2
w/o interpolation w/o markers w/o colors w/o order	$ \begin{vmatrix} 89.6 \pm 2.1 \\ 89.0 \pm 2.1 \\ 88.8 \pm 1.8 \\ 89.3 \pm 2.3 \end{vmatrix} $	$52.9 \pm 3.4 \\ 51.7 \pm 2.5 \\ 51.4 \pm 4.1 \\ 52.7 \pm 4.5$	85.7 ± 1.0 85.3 ± 0.9 84.4 ± 0.7 84.0 ± 1.8	51.9 ± 3.4 50.3 ± 3.2 47.0 ± 2.9 47.8 ± 4.6	95.6 ± 1.1 95.8 ± 1.1 95.0 ± 1.0	96.6 ± 0.9 96.9 ± 0.7 96.2 ± 0.7	95.9 ± 1.0 96.0 ± 1.0 95.3 ± 1.0	96.2 ± 1.0 96.4 ± 0.9 95.7 ± 0.9



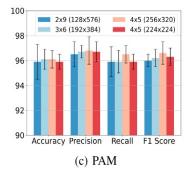


Figure 5: Ablation study of the influence of grid layouts and image sizes. For instance, 4x9 (256x576) denotes a grid layout of 4×9 with an image size of 256×576 pixels.

Table 4: Robustness regarding the style and size of lines and markers. In the brackets, the first element denotes style, and the second represents size.

Line	Marker	AUROC	AUPRC
(solid,1)	(*,2)	89.2 ± 2.0	53.1 ± 3.4
(dashed,1)	(*,2)	89.2 ± 2.1	53.7 ± 4.1
(dotted,1)	(*,2)	89.2 ± 2.1	52.8 ± 4.0
(solid, 0.5)	(*,2)	88.6 ± 1.7	53.0 ± 3.6
(solid,1)	(*,2)	89.2 ± 2.0	53.1 ± 3.4
(solid,2)	(*,2)	88.5 ± 2.3	53.6 ± 3.1
(solid,1)	(*,2)	89.2 ± 2.0	53.1 ± 3.4
(solid,1)	$(\wedge,2)$	89.3 ± 1.9	52.6 ± 4.0
(solid,1)	(0,2)	89.1 ± 1.9	51.3 ± 4.2
(solid,1)	(*,1)	88.2 ± 1.4	52.1 ± 4.5
(solid,1)	(*,2)	89.2 ± 2.0	53.1 ± 3.4
(solid,1)	(*,3)	88.9 ± 1.9	52.8 ± 3.2

- 1. Linear interpolation of two nodes is useless.
- 2. The style and size of marks and lines are robust.
- . Color differentiation is very important for MTS.
- 4. The order of multivariate subgraphs is robust.

Line Plot — e.g. Multivariate TSC

Vision backbone analysis

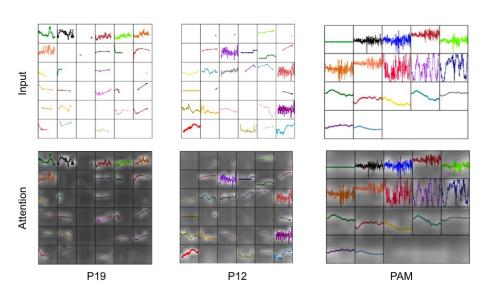


Figure 6: Illustration of the averaged attention map of ViTST.

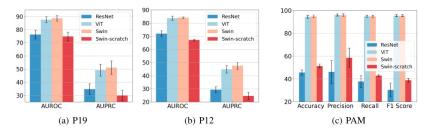
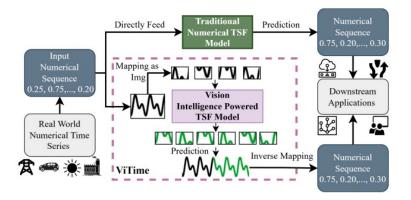


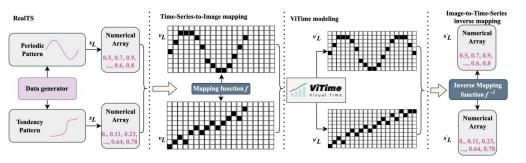
Figure 4: Performance of different backbone vision models on P19, P12, and PAM datasets. We do not use static features for our approach here to exclude their influence.

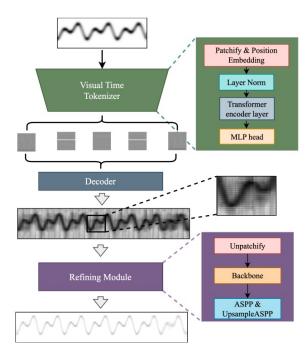
- Transformer (ViT) better captures spatial correlations compared to CNN (ResNet).
- 2. it can focus on the meaningful parts of TS images.
- 3. The pretrained vision knowledge is useful.

Line Plot — e.g. TSFM (ViTime)

Ex.3: First Vision-based Foundation Model for TSF.





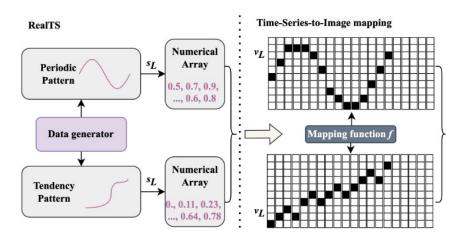


$$\mathcal{L} = d\left(\mathbf{v}_{\mathbf{L}}', \mathbf{v}_{\mathbf{L}}\right) + \alpha KLD\left(\mathbf{v}_{\mathbf{L}}', \mathbf{v}_{\mathbf{L}}\right)$$

Eearth Moving Distance + KL Divergence

Line Plot — e.g. TSFM (ViTime)

Theoretical Advantages of Visual Intelligence for TSF.



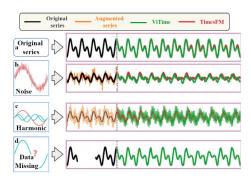


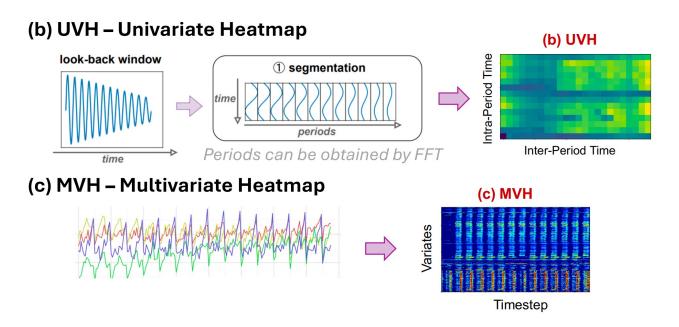
Figure 6: Performance comparison of ViTime versus TimesFM on TSF tasks under various data perturbations: a. Original time series. b. Time series with noises injected. c. Time series with harmonic added. d. Time series with missing data.

- 1. **Spatiotemporal Isometry**: value changes in TS is proportional to pixel variations in images.
- **2.** Pattern Preservation: Visual Fourier spectra matching original time series.
- Geometric Regularization: limited resolution of the image resists disturbance, small disturbance in TS only causes bitty changes in visual embedding.

Heatmap — Intro

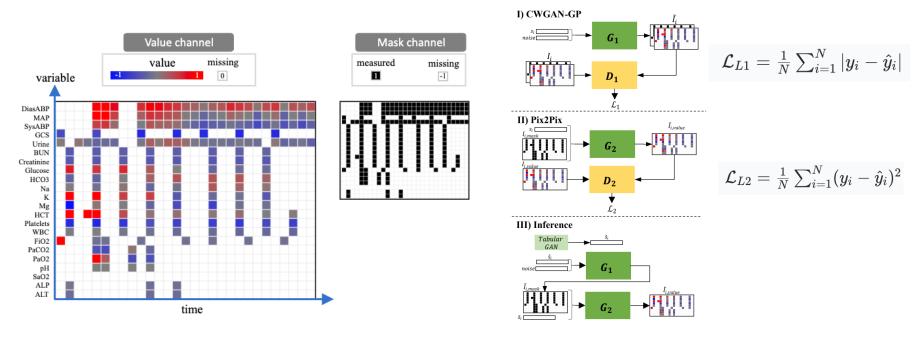
Heatmap visualizes the magnitudes of the values in matrix using color.

Naturally supports MTS.



Heatmap — e.g. MVH TSG (TimEHR)

• **Ex.1**: a GAN-based model for Electronic Health Records (EHR) time series generation, it aims to solve the Irregular sampling, missing value and high dimensional challenges.



Heatmap — e.g. MVH TSF

Ex.2: Video Prediction Model for TSF

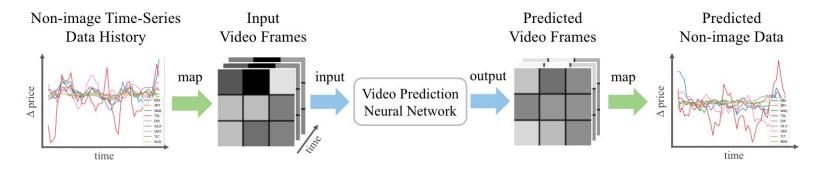
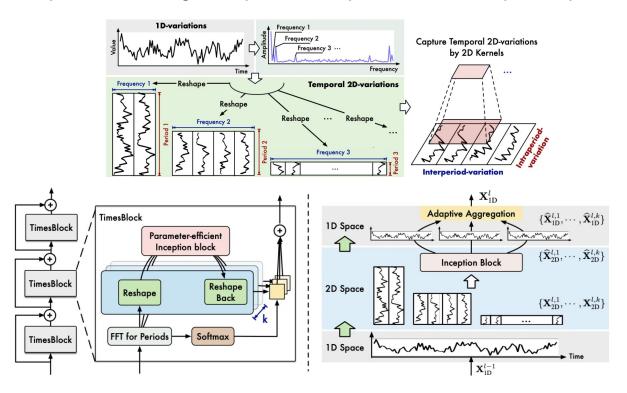


Figure 2: Method overview. First, we turn non-image time-series data history into a video frame at each time stamp. Then, we use a video prediction neural network to predict future video frames. Finally, we map the predicted video frames back to the numerical data space.

Based on domain knowledge, variables with strong relevance are arranged spatially adjacent,
 facilitating the extraction of local correlation features by CNNs.

Heatmap — e.g. UVH TSF (TimesNet)

Ex.3: Perform periodic folding to capture inter-period and intra-period patterns via 2D CNNs.



Heatmap — e.g. UVH TSF (TimesNet)

Sota Performance in Forecasting, Imputation, Classification and Anomaly Detection

Table 2: Long-term forecasting task. The past sequence length is set as 36 for ILI and 96 for the others. All the results are averaged from 4 different prediction lengths, that is $\{24, 36, 48, 60\}$ for ILI and $\{96, 192, 336, 720\}$ for the others. See Table 13 in Appendix for the full results.

Models	TimesNet (Ours)	ETSformer (2022)	LightTS (2022)	DLinear (2023)	FEDformer (2022)	Stationary (2022a)	Autoformer (2021)	Pyraformer (2021a)	Informer (2021)	LogTrans (2019)	Reformer (2020)
Metric	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE
ETTm1	0.400 0.406	0.429 0.425	0.435 0.437	0.403 0.407	0.448 0.452	0.481 0.456	0.588 0.517	0.691 0.607	0.961 0.734	0.929 0.725	0.799 0.671
ETTm2	0.291 0.333	0.293 0.342	0.409 0.436	0.350 0.401	0.305 0.349	0.306 0.347	0.327 0.371	1.498 0.869	1.410 0.810	1.535 0.900	1.479 0.915
ETTh1	0.458 0.450	0.542 0.510	0.491 0.479	0.456 0.452	0.440 0.460	0.570 0.537	0.496 0.487	0.827 0.703	1.040 0.795	1.072 0.837	1.029 0.805
ETTh2	0.414 0.427	0.439 0.452	0.602 0.543	0.559 0.515	0.437 0.449	0.526 0.516	0.450 0.459	0.826 0.703	4.431 1.729	2.686 1.494	6.736 2.191
Electricity	0.192 0.295	0.208 0.323	0.229 0.329	0.212 0.300	0.214 0.327	0.193 0.296	0.227 0.338	0.379 0.445	0.311 0.397	0.272 0.370	0.338 0.422
Traffic	0.620 0.336	0.621 0.396	0.622 0.392	0.625 0.383	3 <mark>0.610</mark> 0.376	0.624 0.340	0.628 0.379	0.878 0.469	0.764 0.416	0.705 0.395	0.741 0.422
Weather	0.259 0.287	0.271 0.334	0.261 0.312	0.265 0.317	0.309 0.360	0.288 0.314	0.338 0.382	0.946 0.717	0.634 0.548	0.696 0.602	0.803 0.656
Exchange	0.416 0.443	0.410 0.427	<u>0.385</u> 0.447	0.354 0.414	0.519 0.500	0.461 0.454	0.613 0.539	1.913 1.159	1.550 0.998	1.402 0.968	1.280 0.932
ILI	2.139 0.931	2.497 1.004	7.382 2.003	2.616 1.090	2.847 1.144	2.077 0.914	3.006 1.161	7.635 2.050	5.137 1.544	4.839 1.485	4.724 1.445

Table 3: Short-term forecasting task on M4. The prediction lengths are in [6, 48] and results are weighted averaged from several datasets under different sample intervals. See Table 14 for full results.

Models	TimesNet	N-HiTS	N-BEATS	ETSformer	LightTS	DLinear	FEDformer	Stationary	Autoformer	Pyraformer	Informer	LogTrans	Reformer
Models	(Ours)	(2022)	(2019)	(2022)	(2022)	(2023)	(2022)	(2022a)	(2021)	(2021a)	(2021)	(2019)	(2020)
SMAPE	11.829	11.927	11.851	14.718	13.525	13.639	12.840	12.780	12.909	16.987	14.086	16.018	18.200
MASE	1.585	1.613	1.599	2.408	2.111	2.095	1.701	1.756	1.771	3.265	2.718	3.010	4.223
OWA	0.851	0.861	0.855	1.172	1.051	1.051	0.918	0.930	0.939	1.480	1.230	1.378	1.775

Table 4: Imputation task. We randomly mask $\{12.5\%, 25\%, 37.5\%, 50\%\}$ time points in length-96 time series. The results are averaged from 4 different mask ratios. See Table 16 for full results.

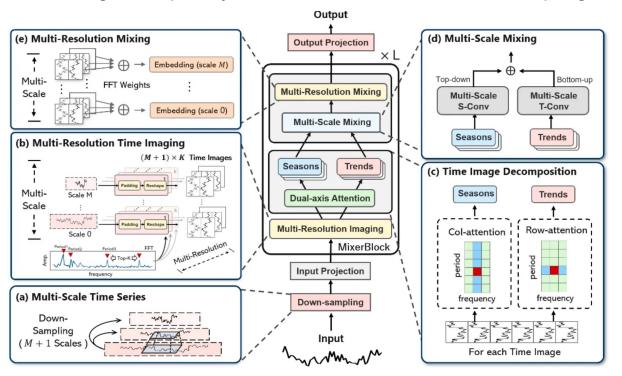
Models	TimesNet (Ours)	ETSformer (2022)	LightTS (2022)	DLinear (2023)	FEDformer (2022)	Stationary (2022a)	Autoformer (2021)	Pyraformer (2021a)	Informer (2021)	LogTrans (2019)	Reformer (2020)
Mask Ratio	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE
ETTm1	0.027 0.107	0.120 0.253	0.104 0.218	0.093 0.206	0.062 0.177	0.036 0.126	0.051 0.150	0.717 0.570	0.071 0.188	0.050 0.154	0.055 0.166
ETTm2	0.022 0.088	0.208 0.327	0.046 0.151	0.096 0.208	0.101 0.215	0.026 0.099	0.029 0.105	0.465 0.508	0.156 0.292	0.119 0.246	0.157 0.280
ETTh1	0.078 0.187	0.202 0.329	0.284 0.373	0.201 0.306	0.117 0.246	0.094 0.201	0.103 0.214	0.842 0.682	0.161 0.279	0.219 0.332	0.122 0.245
ETTh2	0.049 0.146	0.367 0.436	0.119 0.250	0.142 0.259	0.163 0.279	0.053 0.152	0.055 0.156	1.079 0.792	0.337 0.452	0.186 0.318	0.234 0.352
Electricity	0.092 0.210	0.214 0.339	0.131 0.262	0.132 0.260	0.130 0.259	0.100 0.218	0.101 0.225	0.297 0.382	0.222 0.328	0.175 0.303	0.200 0.313
Weather	0.030 0.054	0.076 0.171	0.055 0.117	0.052 0.110	0.099 0.203	0.032 0.059	0.031 0.057	0.152 0.235	0.045 0.104	0.039 0.076	0.038 0.087

Table 5: Anomaly detection task. We calculate the F1-score (as %) for each dataset. *. means the *former. A higher value of F1-score indicates a better performance. See Table 15 for full results.

Models	TimesNet	TimesNet	ETS.	FED.	LightTS	DLinear	Stationary	Auto.	Pyra.	Anomaly*	In.	Re.	LogTrans	Trans.
Wiodels		(Inception)	(2022)	(2022)	(2022)	(2023)	(2022a)	(2021)	(2021a)	(2021)	(2021)	(2020)	(2019)	(2017)
SMD	85.81	85.12	83.13	85.08	82.53	77.10	84.72	85.11	83.04	85.49	81.65	75.32	76.21	79.56
MSL	85.15	84.18	85.03	78.57	78.95	84.88	77.50	79.05	84.86	83.31	84.06	84.40	79.57	78.68
SMAP	71.52	70.85	69.50	70.76	69.21	69.26	71.09	71.12	71.09	71.18	69.92	70.40	69.97	69.70
SWaT	91.74	92.10	84.91	93.19	93.33	87.52	79.88	92.74	91.78	83.10	81.43	82.80	80.52	80.37
PSM	97.47	95.21	91.76	97.23	97.15	93.55	97.29	93.29	82.08	79.40	77.10	73.61	76.74	76.07
Avg F1	86.34	<u>85.49</u>	82.87	84.97	84.23	82.46	82.08	84.26	82.57	80.50	78.83	77.31	76.60	76.88

Heatmap — e.g. UVH TSF (TimeMixer++)

• Ex.4: Periodic folding in frequency domain and multi-scale down-sapling in time domain.



Heatmap — e.g. UVH TSF (TimeMixer++)

Sota in long/short/few/zero Forecasting, Imputation, Classification and Anomaly Detection

Table 1: Long-term forecasting results. We average the results across 4 prediction lengths: $\{96, 192, 336, 720\}$. The best performance is highlighted in **red**, and the second-best is <u>underlined</u>. Full results can be found in Appendix \overline{H} .

Models		dixer++ urs)	Time!		iTrans		Patch (20		Cross	former 123	Til (20)	DE 23a)	Time (20		DLii (20:		SCI (202		FEDf (202		Statio (20)		Autof	
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Electricity	0.165	0.253	0.182	0.272	0.178	0.270	0.205	0.290	0.244	0.334	0.251	0.344	0.192	0.295	0.212	0.300	0.268	0.365	0.214	0.327	0.193	0.296	0.227	0.338
ETT (Avg)	0.349	0.399	0.367	0.388	0.383	0.377	0.381	0.397	0.685	0.578	0.482	0.470	0.391	0.404	0.442	0.444	0.689	0.597	0.408	0.428	0.471	0.464	0.465	0.459
Exchange	0.357	0.391	0.391	0.453	0.378	0.360	0.403	0.404	0.940	0.707	0.370	0.413	0.416	0.443	0.354	0.414	0.750	0.626	0.519	0.429	0.461	0.454	0.613	0.539
Traffic	0.416	0.264	0.484	0.297	0.428	0.282	0.481	0.304	0.550	0.304	0.760	0.473	0.620	0.336	0.625	0.383	0.804	0.509	0.610	0.376	0.624	0.340	0.628	0.379
Weather	0.226	0.262	0.240	0.271	0.258	0.278	0.259	0.281	0.259	0.315	0.271	0.320	0.259	0.287	0.265	0.317	0.292	0.363	0.309	0.360	0.288	0.314	0.338	0.382
Solar-Energy	0.203	0.238	0.216	0.280	0.233	0.262	0.270	0.307	0.641	0.639	0.347	0.417	0.301	0.319	0.330	0.401	0.282	0.375	0.291	0.381	0.261	0.381	0.885	0.711

Table 2: Univariate short-term forecasting results, averaged across all M4 subsets. Full results are available in Appendix [H]

Models	TimeMixer++ (Ours)	TimeMixer (2024b)	iTransformer	TiDE (2023a)	TimesNet (2023)	N-HiTS (2023)	N-BEATS (2019)	PatchTST [2023]	MICN (2023a)	FiLM (2022a)	LightTS (2022a)	DLinear (2023)	FED. (2022b)	Stationary (2022c)	Auto. [2021]
SMAPE	11.448	11.723	12.684	13.950	11.829	11.927	11.851	13.152	19.638	14.863	13.525	13.639	12.840	12.780	12.909
MASE	1.487	1.559	1.764	1.940	1.585	1.613	1.559	1.945	5.947	2.207	2.111	2.095	1.701	1.756	1.771
OWA	0.821	0.840	0.929	1.020	0.851	0.861	0.855	0.998	2.279	1.125	1.051	1.051	0.918	0.930	0.939

Table 3: Results of multivariate short-term forecasting, averaged across all PEMS datasets. Full results can be found in Table 18 of Appendix H.

Models T	TimeMixer++	TimeMixer	iTransformer	TiDE SCIN	et Crossform	er PatchTST	TimesNet	MICN	DLinear	FEDformer	Stationary	Autoformer
Wiodels	(Ours)	(2024b)	(2024)	(2023a) (2022	a (2023)	(2023)	(2023)	(2023a)	2023	(2022b)	(2022c)	(2021)
MAE	15.91	17.41	19.87	21.86 19.1	2 19.03	23.01	20.54	19.34	23.31	23.50	21.32	22.62
MAPE	10.08	10.59	12.55	13.80 12.2	4 12.22	14.95	12.69	12.38	14.68	15.01	14.09	14.89
RMSE	27.06	28.01	31.29	34.42 30.1	2 30.17	36.05	33.25	30.40	37.32	36.78	36.20	34.49

Table 5: Few-shot learning on 10% training data. All results are averaged from 4 prediction lengths: $\{96, 192, 336, 720\}$.

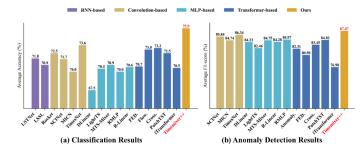
Models ^T	TimeM (Ou		TimeMixer iTr	ansformer 2024	TiDE 2023a	Crossformer (2023)	DLinear [2023]	PatchTST (2023)	TimesNet 2023	FEDformer [2022b]	Autoformer 2021	Stationary 2022c	ETSformer 2022	LightTS 2022b	Informer 2021b	Reformer [2020]
Metric M	MSE	MAE	MSE MAE M	SE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE
ETT(Avg)	0.396	0.421	0.453 0.445 0.4	58 0.497	0.432 0.444	0.470 0.471	0.506 0.484	0.461 0.446	0.586 0.496	0.573 0.532	0.834 0.663	0.627 0.510	0.875 0.687	1.497 0.875	2.408 1.146	2.535 1.191
Weather 0	0.241	0.271	0.242 0.281 0.2	91 0.331	0.249 0.291	0.267 0.306	0.241 0.283	0.242 0.279	0.279 0.301	0.284 0.324	0.300 0.342	0.318 0.323	0.318 0.360	0.289 0.322	0.597 0.495	0.546 0.469
ECL 0	0.168	0.271	0.187 0.277 0.2	41 0.337	0.196 0.289	0.214 0.308	<u>0.180</u> 0.280	0.180 0.273	0.323 0.392	0.346 0.427	0.431 0.478	0.444 0.480	0.660 0.617	0.441 0.489	1.195 0.891	0.965 0.768

Table 4: Results of imputation task across six datasets. To evaluate our model performance, we randomly mask $\{12.5\%, 25\%, 37.5\%, 50\%\}$ of the time points in time series of length 1024. The final results are averaged across these 4 different masking ratios.

Models		dixer++ urs)	TimeMixer (2024b)	iTransformer	PatchTST (2023)	Crossformer	FEDformer (2022b)	TIDE (2023a)	DLinear (2023)	TimesNet (2023)	MICN (2023a)	Autoformer (2021)
Metric	MSE	MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE
ETT(Avg)	0.055	0.154	0.097 0.220	0.096 0.205	0.120 0.225	0.150 0.258	0.124 0.230	0.314 0.366	0.115 0.229	0.079 0.182	0.119 0.234	0.104 0.215
ECL	0.109	0.197	0.142 0.261	0.140 0.223	0.129 <u>0.198</u>	0.125 0.204	0.181 0.314	0.182 0.202	0.080 0.200	0.135 0.255	0.138 0.246	6 0.141 0.234
Weather	0.049	0.078	0.091 0.114	0.095 0.102	0.082 0.149	0.150 0.111	0.064 0.139	0.063 0.131	0.071 0.107	0.061 0.098	0.075 0.126	0.066 0.107

Table 6: Zero-shot learning results. The results are averaged from 4 different prediction lengths: {96, 192, 336, 720}.

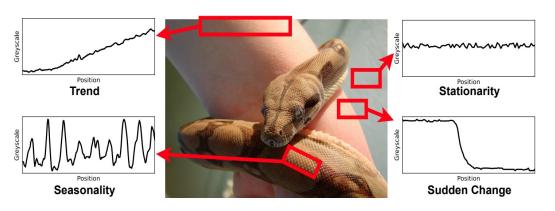
Methods	TimeMix	er++	Time!	Mixer	LLM	Time	DLi	near	Patch	TST	Time	sNet	iTrans	former	Crossf	ormer	Fedfo	ormer	Autof	ormer	Til	DE
Methods	(Ours))	202	24b	20:	23	20	23)	20	23)	20	23	20	(24)	20	23	202	22Б)	20	21)	200	23a)
Metric	MSE M	IAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE								
$ETTh1 \rightarrow ETTh2$	0.367 0.	391	0.427	0.424	0.992	0.708	0.493	0.488	0.380	0.405	0.421	0.431	0.481	0.474	0.555	0.574	0.712	0.693	0.634	0.651	0.593	0.582
$ETTh1 \to ETTm2$	0.301 0.	357	0.361	0.397	1.867	0.869	0.415	0.452	0.314	0.360	0.327	0.361	0.311	0.361	0.613	0.629	0.681	0.588	0.647	0.609	0.563	0.547
$ETTh2 \rightarrow ETTh1$	0.511 0.	498	0.679	0.577	1.961	0.981	0.703	0.574	0.565	0.513	0.865	0.621	0.552	0.511	0.587	0.518	0.612	0.624	0.599	0.571	0.588	0.556
$ETTm1 \rightarrow ETTh2$	0.417 0.	422	0.452	0.441	0.992	0.708	0.464	0.475	0.439	0.438	0.457	0.454	0.434	0.438	0.624	0.541	0.533	0.594	0.579	0.568	0.543	0.535
$ETTm1 \rightarrow ETTm2$	0.291 0.	331	0.329	0.357	1.867	0.869	0.335	0.389	0.296	0.334	0.322	0.354	0.324	0.331	0.595	0.572	0.612	0.611	0.603	0.592	0.534	0.527
$ETTm2 \rightarrow ETTm1$	0.427 0.	448	0.554	0.478	1.933	0.984	0.649	0.537	0.568	0.492	0.769	0.567	0.559	0.491	0.611	0.593	0.577	0.601	0.594	0.597	0.585	0.571

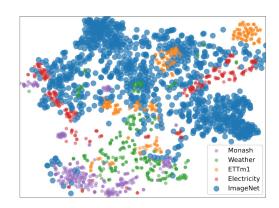


Heatmap — e.g. UVH TSF (VisionTS)

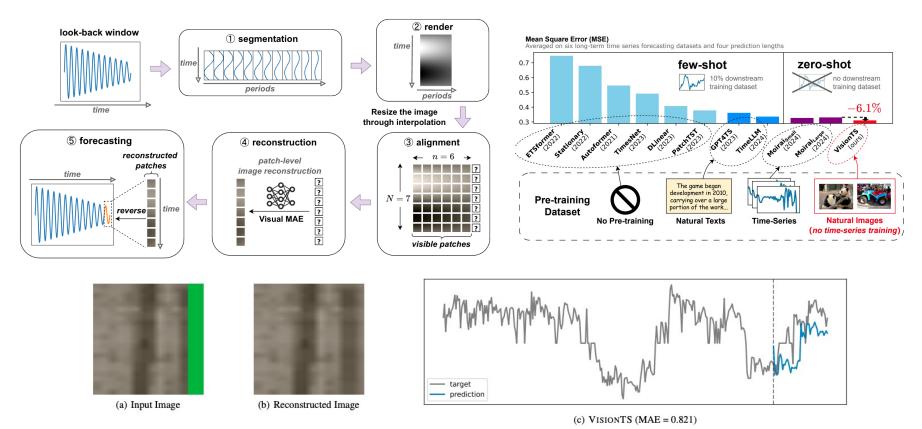
- Ex.5: Also adopts the periodic folding imaging, leveraging vision models for TSF.
- VisionTS reformulates TSF into an image reconstruction task via MAE.

	Characteristics	Origin	Information
Time series	continuous	physical systems	high redundancy
Image	continuous	physical systems	high redundancy
Text	discrete	human cognitive construct	semantically dense





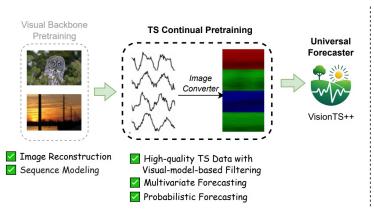
Heatmap — e.g. UVH TSF (VisionTS)

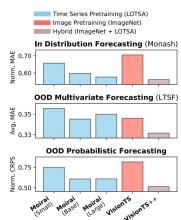


Heatmap — e.g. MVH TSFM (VisionTS++)

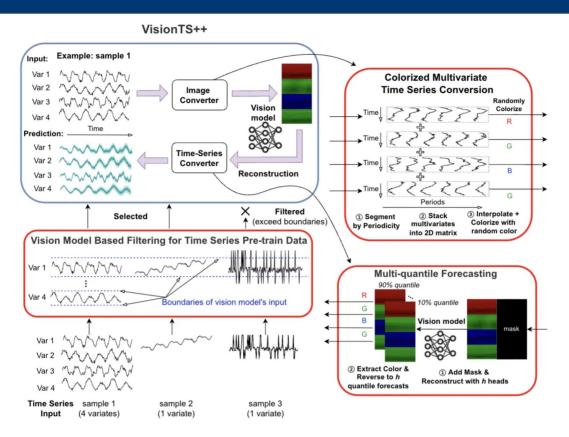
Three gaps between TS and Image:

	Modality Gap	Dimensional Gap	Probabilistic-forecasting Gap
TS	unbounded, heterogeneous	arbitrary numbers of variates	need uncertainty-aware probabilistic predictions
Image	structured, bounded	3 channels (RGB)	deterministic output of most vision models





Heatmap — e.g. MVH TSFM (VisionTS++)



RP — Intro

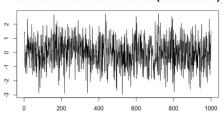
RP (Recurrent Plot) capture periodicity, chaos, and other dynamic patterns of the sequence.

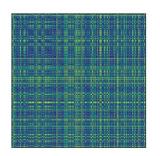
$$\mathbf{x} \in \mathbb{R}^{1 \times T} \quad \mathbf{v}_t = [x_t, x_{t+\tau}, x_{t+2\tau}, ..., x_{t+(m-1)\tau}] \in \mathbb{R}^{m\tau}, \quad 1 \le t \le l$$

$$\mathsf{RP}_{i,j} = \Theta(\varepsilon - \|\mathbf{v}_i - \mathbf{v}_j\|), \quad 1 \le i, j \le l$$

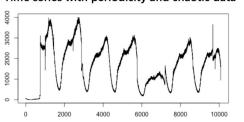
$$RP_{i,j} = \Theta(\varepsilon - \|\mathbf{v}_i - \mathbf{v}_j\|), \quad 1 \le i, j \le j$$

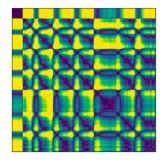
Uncorrelated stochastic data(white noise)



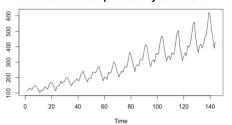


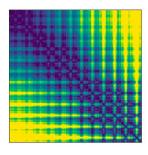
Time series with periodicity and chaotic data





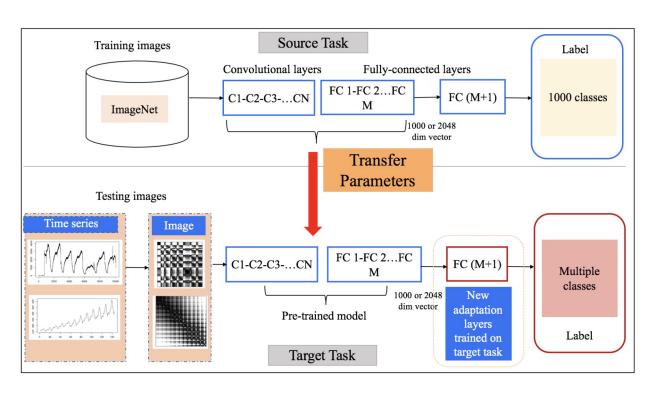
Time series with periodicity and trend





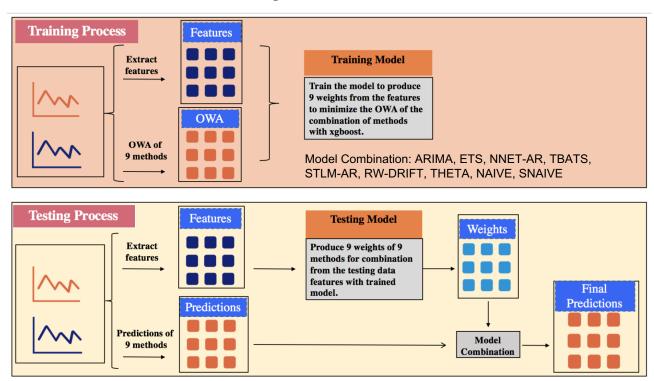
RP — Intro

Ex.1: Vision Models for TS Classification.



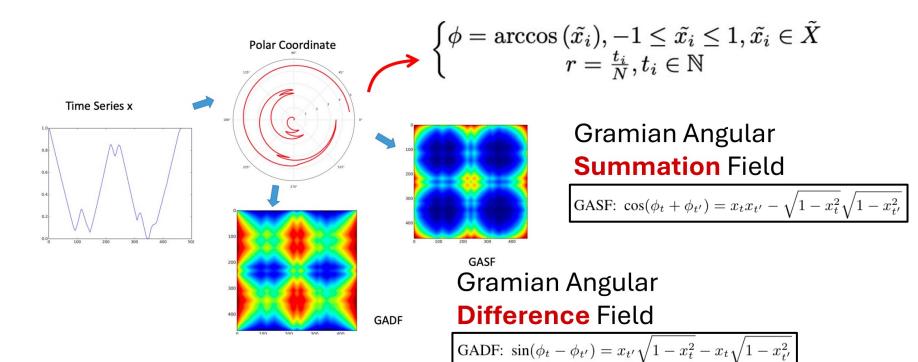
RP — Intro

Ex.2: Vision Models for TS Forecasting.



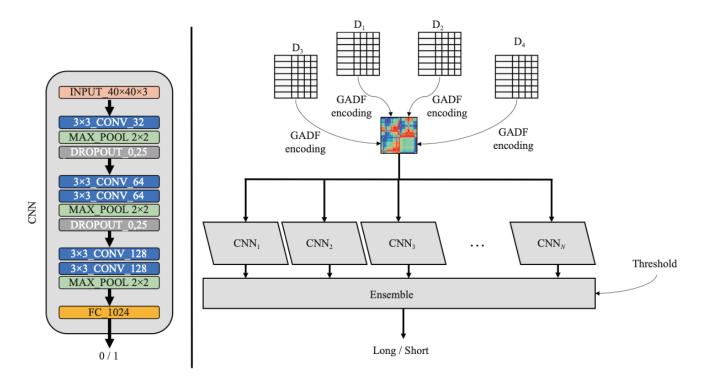
GAF — Intro

GAF (Gramian Angular Field) encodes the correlation of time series at different time steps.



GAF — e.g. TSF

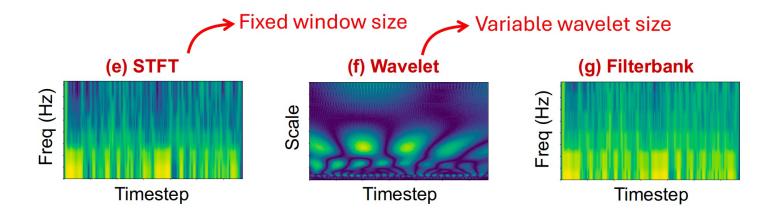
Ex.1: CNNs for TS Anomaly Detection



Spectrogram — Intro

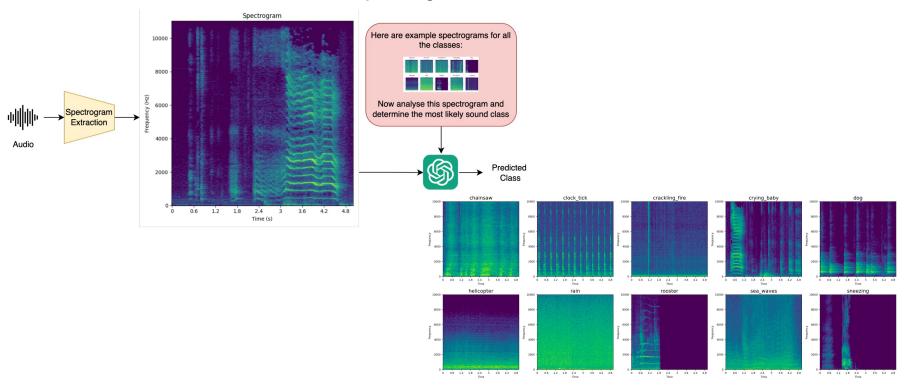
Spectrogram is a visual representation of frequencies of a signal as it varies with time.

Extensively used for audio signals analysis, type of UTS.



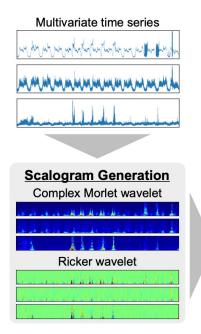
Spectrogram — e.g. TSC

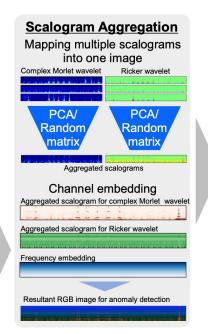
Ex.1: VLMs for Few-shot Audio Spectrogram Classification.

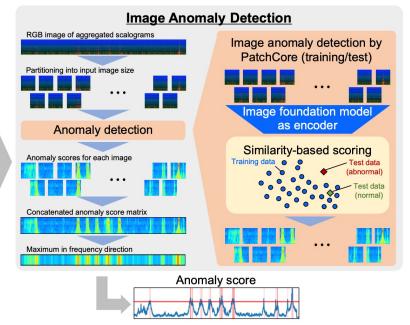


Spectrogram — e.g. TSAD

Ex.2: Vision Models for TS Anomaly Detection







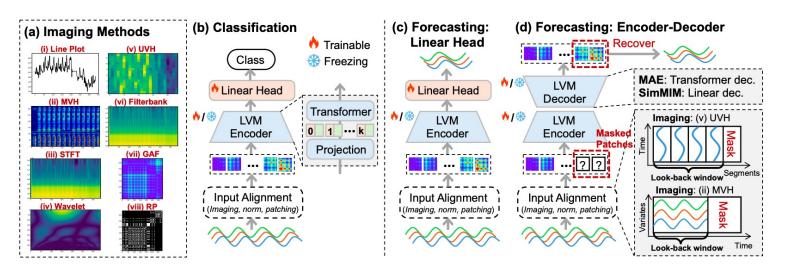
TS2Vision Summary

Method	TS-Type	Advantages	Limitations
Line Plot (§3.1)	UTS, MTS	matches human perception of time series	limited to MTS with a small number of variates
Heatmap (§3.2)	UTS, MTS	straightforward for both UTS and MTS	the order of variates may affect their correlation learning
Spectrogram (§3.3)		encodes the time-frequency space	limited to UTS; needs a proper choice of window/wavelet
GAF (§3.4)			limited to UTS; $O(T^2)$ time and space complexity
RP (§3.5)	UTS	flexibility in image size by tuning m and $ au$	limited to UTS; information loss after thresholding

Method	TS-Type	Imaging	Imaged Time Series Modeling					. TS-Recover	Task	Domain	Code
Wethod	15-1ypc		Multimodal	Model	Pre-trained	Fine-tune	Prompt		Idok	Domain	Code
[Silva et al., 2013]	UTS	RP	×	K-NN	Х	Х	Х	×	Classification	General	Х
[Wang and Oates, 2015a]	UTS	GAF	×	CNN	×	✓>	×	/	Classification	General	×
[Wang and Oates, 2015b]	UTS	GAF	×	CNN	х	✓ b	×	/	Multiple	General	×
[Ma et al., 2017]	MTS	Heatmap	×	CNN	X	✓ b	×	/	Forecasting	Traffic	×
[Hatami et al., 2018]	UTS	RP	×	CNN	х	✓ >	×	×	Classification	General	X
[Yazdanbakhsh and Dick, 2019]	MTS	Heatmap	×	CNN	×	✓ b	×	×	Classification	General	/ [1]
MSCRED [Zhang et al., 2019]	MTS	Other (§3.6)	×	ConvLSTM	х	✓ >	×	×	Anomaly	General	/ [2]
[Li et al., 2020]	UTS	RP	×	CNN	/	/	×	×	Forecasting	General	✓ ^[3]
[Cohen et al., 2020]	UTS	LinePlot	×	Ensemble	×	1,6	×	×	Classification	Finance	X
[Barra et al., 2020]	UTS	GAF	×	CNN	×	✓ b	×	×	Classification	Finance	×
VisualAE [Sood et al., 2021]	UTS	LinePlot	×	CNN	×	✓ b	×	/	Forecasting	Finance	X
[Zeng et al., 2021]	MTS	Heatmap	×	CNN, LSTM	×	√ b	×	/	Forecasting	Finance	X
AST [Gong et al., 2021]	UTS	Spectrogram		DeiT	/	/	×	×	Classification	Audio	/ [4]
TTS-GAN [Li et al., 2022]	MTS	Heatmap	×	ViT	×	100	×	/	Ts-Generation	Health	√ [5]
SSAST [Gong et al., 2022]	UTS	Spectrogram	×	ViT	✓ ¹	/	×	×	Classification	Audio	/ [6]
MAE-AST [Baade et al., 2022]	UTS	Spectrogram	×	MAE	✓ ‡	/	×	×	Classification	Audio	√ [7]
AST-SED [Li et al., 2023a]	UTS	Spectrogram	×	SSAST, GRU	/	/	×	×	EventDetection	Audio	х
ForCNN [Semenoglou et al., 2023]	UTS	LinePlot	×	CNN	×	16	×	×	Forecasting	General	X
Vit-num-spec [Zeng et al., 2023]	UTS	Spectrogram	×	ViT	×	✓>	×	×	Forecasting	Finance	Х
ViTST [Li et al., 2023b]	MTS	LinePlot	×	Swin	/	/	×	×	Classification	General	√ [8]
MV-DTSA [Yang et al., 2023]	UTS*	LinePlot	×	CNN	×	✓ b	×	/	Forecasting	General	√ [9]
TimesNet [Wu et al., 2023]	MTS	Heatmap	×	CNN	×	✓ >	×	/	Multiple	General	✓ [10
ITF-TAD [Namura et al., 2024]	UTS	Spectrogram	×	CNN	1	×	×	×	Anomaly	General	
[Kaewrakmuk et al., 2024]	UTS	GAF	×	CNN	/	/	×	×	Classification	Sensing	X
HCR-AdaAD [Lin et al., 2024]	MTS	RP	×	CNN, GNN	×	10	×	×	Anomaly	General	
FIRTS [Costa et al., 2024]	UTS	Other (§3.6)	×	CNN	х	✓>	×	×	Classification	General	
CAFO [Kim et al., 2024]	MTS	RP	×	CNN, ViT	×	✓ b	×	×	Explanation	General	
ViTime [Yang et al., 2024]	UTS*	LinePlot	×	ViT	✓ ‡	/	×	/	Forecasting	General	√ [13
ImagenTime [Naiman et al., 2024]	MTS	Other (§3.6)	×	CNN	×	✓ b	×	/	Ts-Generation	General	✓ [14
TimEHR [Karami et al., 2024]	MTS	Heatmap	×	CNN	×	✓ b	×	/	Ts-Generation	Health	√ [15
VisionTS [Chen et al., 2024]	UTS*	Heatmap	×	MAE	/	/	×	/	Forecasting	General	√ [16
TimeMixer++ [Wang et al., 2025]	MTS	Heatmap	×	CNN	×	√ b	×	/	Multiple	General	√ [17
InsightMiner [Zhang et al., 2023]	UTS	LinePlot	/	LLaVA	/	/	/	×	Txt-Generation	General	Х
[Wimmer and Rekabsaz, 2023]	MTS	LinePlot	/	CLIP, LSTM	/	/	×	×	Classification	Finance	Х
[Dixit et al., 2024]	UTS	Spectrogram	/	GPT4o, Gemini & Claude3	1	×	1	×	Classification	Audio	×
[Daswani et al., 2024]	MTS	LinePlot	/	GPT4o, Gemini	/	×	1	×	Multiple	General	X
TAMA [Zhuang et al., 2024]	UTS	LinePlot	/	GPT40	/	×	/	×	Anomaly	General	×
[Prithyani et al., 2024]	MTS	LinePlot	/	LLaVA	/	/	/	×	Classification	General	/ [18

- More research focuses on <u>Line Plot</u> and <u>Heatmap</u>, as they support <u>MTS</u>, more common in reality.
- 2. TS2Vision enables a wide range of tasks, mainly classification, forecasting, anomaly detection.

- Select two supervised (ViT/Swin) and two self-supervised pre-trained LVMs (MAE/SimMIM).
- Employ 8 common time series visualization methods.
- Analyze the effects on 10 TSC datasets and 8 TSF datasets.



Comparison results between LVM and non-LVM methods.

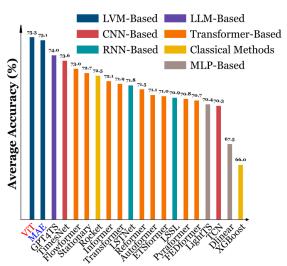


Figure 2: Model comparison in TSC. The results are averaged over 10 UEA datasets. See Table 9 in Appendix B.1 for full results.

Method	MAE	ViT	Time-LLM	GPT4TS	CALF	Dlinear	PatchTST	TimesNet	FEDformer	Autoformer
Metrics	MSE MAE									
ETTh1	0.409 0.419	0.445 0.449	0.418 0.432	0.418 0.421	0.432 0.431	0.423 0.437	0.413 0.431	0.458 0.450	0.440 0.460	0.496 0.487
ETTh2	0.357 0.390	0.389 0.411	0.361 0.396	0.354 0.389	0.351 0.384	0.431 0.447	0.330 0.379	0.414 0.427	0.437 0.449	0.450 0.459
ETTm1	0.345 0.374	0.409 0.422	0.356 0.377	0.363 0.378	0.396 0.391	0.357 0.379	0.351 0.381	0.400 0.406	0.448 0.452	0.588 0.517
ETTm2	0.268 0.327	0.300 0.337	0.261 0.316	0.254 0.311	0.283 0.323	0.267 0.334	0.255 0.315	0.291 0.333	0.305 0.349	0.327 0.371
Weather	0.225 0.258	0.234 0.273	0.244 0.270	0.227 0.255	0.251 0.274	0.249 0.300	0.226 0.264	0.259 0.287	0.309 0.360	0.338 0.382
Illness	1.837 0.883	2.179 1.016	2.018 0.894	1.871 0.852	1.700 0.869	2.169 1.041	1.443 0.798	2.139 0.931	2.847 1.144	3.006 1.161
Traffic	0.386 0.256	0.430 0.343	0.422 0.281	0.421 0.274	0.444 0.284	0.434 0.295	0.391 0.264	0.620 0.336	0.610 0.376	0.628 0.379
Electricity	0.159 0.250	0.173 0.266	0.165 0.259	0.170 0.263	0.176 0.266	0.166 0.264	0.162 0.253	0.193 0.295	0.214 0.327	0.227 0.338
# Wins	9	0	0	3	0	0	4	0	0	0

Table 2: Model comparison in TSF. The results are averaged over different prediction lengths. See Table 11 in Appendix B.2 for full results. Red and Blue numbers are the the best and second best results. # Wins is the number of times the method performed best.

Pre-trained LVMs are useful in TSC!

But pose challenges when used for TSF!

RQ1: What type of LVM best fits TSC (TSF) task?

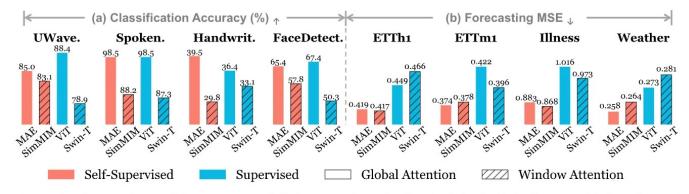


Figure 3: Comparison of 4 LVMs on TSC (accuracy) and TSF (MSE). \uparrow (\downarrow) indicates a higher (lower) value is better. Two taxonomies of the LVMs: (1) supervised (ViT, Swin) vs. self-supervised (MAE, SimMIM), (2) using global attention (ViT, MAE) vs. window-based attention (Swin, SimMIM).

Self-supervised LVM outperforms supervised LVM in TSF!

Global attention is more suitable for time series than window attention!

RQ2: Which imaging method best fits TSC (TSF) task?

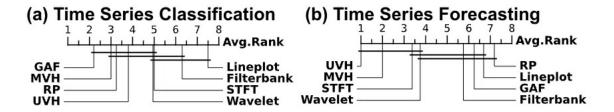


Figure 4: Average rank of different imaging methods in (a) TSC task, and (b) TSF task. Lower rank is better.

In TSC, GAF and MVH have the best effect!

In TSF, heatmap are more suitable for reconstruction frameworks due to retaining the original values!

- RQ3: Are the pre-trained parameters in LVMs useful in time series tasks?
- RQ4: How useful are LVMs' architectures

Tas	k	T	SC Task	TSF Task (MSE _↓)					
Dat	taset	UWave.	Spoken.	Handwrit.	FaceDetect.	ETTh1	ETTm1	Illiness	Weather
	(a) All parameters	88.4	98.5	36.4	67.4	0.558	0.399	1.781	0.273
	(b) All but CLS & Mask	87.5	98.2	35.2	66.3	0.530	0.408	1.783	0.275
03	(c) MLP & norm	88.7	98.4	35.5	67.1	0.532	0.396	1.737	0.264
R	(d) Norm	81.6	98.0	28.5	65.2	0.409	0.345	1.837	0.225
	(e) Zero-shot	84.0	98.5	27.8	66.7	0.452	0.420	2.037	0.308
	(f) Train from scratch	73.4	97.0	24.3	65.0	0.475	0.372	1.723	0.241
24	w/o-LVM	78.6	96.4	22.4	64.1	0.423	0.376	2.291	0.255
R	LVM2ATTN	80.1	96.5	20.7	66.2	0.428	0.357	2.108	0.254

Table 3: Ablation analysis of LVMs. For classification, higher accuracy indicates better performance. For forecasting, lower MSE is preferred. Full results are in Appendices B.5 and B.6.

Fine-tuning all parameters in TSF is best, only fine-tuning the norm layer in TSF can improve performance!

LVM may two complicated for TS, but its pretrained knowledge is useful!

RQ5: Do LVMs capture temporal order of time series?

Tas	sk		Clas	sification	Forecasting					
Da	taset	UWave.	Spoken.	Handwrit.	FaceDetect.	ETTh1	ETTm1	Illiness	Weather	
=	w/o-LVM	78.2%	49.7%	81.7%	19.3%	76.2%	98.4%	116.4%	24.1%	
Sf-All	LVM2ATTN	86.4%	50.6%	89.9%	22.4%	79.7%	117.1%	109.1%	24.4%	
Sf	LVM	80.7%	84.7%	91.5%	29.2%	83.8%	118.4%	162.8%	44.5%	
ılf	w/o-LVM	6.6%	12.4%	74.6%	10.8%	14.4%	28.3%	41.6%	2.4%	
Half	LVM2ATTN	8.7%	11.6%	83.6%	11.3%	19.5%	44.8%	69.3%	2.4%	
Sf-	LVM	36.4%	30.2%	86.5%	9.3%	14.5%	48.2%	21.3%	9.6%	
Half	w/o-LVM	98.8%	82.2%	83.5%	22.8%	13.0%	145.3%	11.0%	34.0%	
H-	LVM2ATTN	98.9%	82.3%	87.0%	24.6%	9.1%	158.3%	27.9%	35.5%	
Ex	LVM	59.4%	89.9%	97.0%	9.2%	14.2%	242.3%	23.0%	67.2%	
ng	w/o-LVM	-1.0%	3.1%	22.3%	-1.2%	47.3%	58.5%	94.1%	33.4%	
ski	LVM2ATTN	1.0%	3.6%	20.3%	2.7%	46.0%	70.3%	127.8%	33.6%	
MaskingEx	LVM	29.0%	41.8%	56.0%	7.4%	47.5%	58.4%	128.9%	49.6%	

Table 4: Performance drop of the compared models under different temporal perturbations. Red color marks the largest drop for each perturbation strategy. Full results are in Appendix B.7.

LVM is sensitive to time disturbance, proving its effective utilization of temporal patterns.

RQ6: What are the computational costs of LVMs?

M	Iethod		LVM	10	1st B	aseline (task s	pecific)	2nd Baseline (task specific)			
Task TSC	Dataset UWave. Handwrit.	# Param (M) 89.43 97.59	Train (min) 2.83 5.18	Inference(ms) 11.52 23.72	# Param (M) 82.23 83.62	Train (min) 1.19 1.33	Inference(ms) 57.61 50.51	# Param (M) 2.42 2.47	Time (min) 0.39 0.51	Inference(ms) 1.69 0.78	
TSF	ETTh1 Weather	111.91 111.91	9.99 207.83	4.32 1.50	3.75 6.90	0.52 16.97	0.18 0.10	85.02 86.64	10.46 94.10	0.50 0.35	

Table 5: Computational costs of LVMs and two best baselines in TSC (GPT4TS, TimesNet) and TSF (PatchTST, GPT4TS). The forecasting costs are measured with prediction length 96.

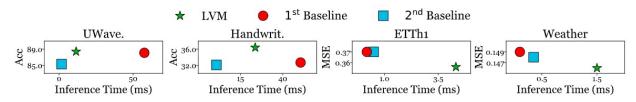
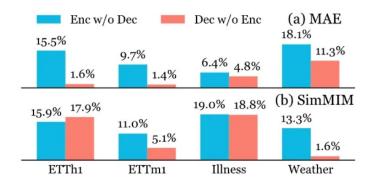


Figure 6: Inference time vs. performance of compared methods on TSC (accuracy) using UWaveGesture, SpokenArabicDigits, and TSF (MSE) using ETTh1, Weather. Full results are in Appendix B.8.

Although the calculation cost is higher, it has potential.

RQ7: Which component of LVMs contributes more to forecasting?

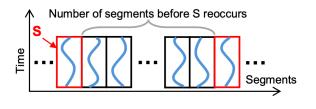


Decoder of SimMIM is a linear layer accounting for only 3.8% of all parameters

Figure 7: Forecasting performance drop (%) of (a) MAE and (b) SimMIM when only using encoder (blue) and decoder (red).

The decoder of the self-supervised LVM is more critical in prediction than the encoder.

RQ8: Will period-based imaging method induce any bias?



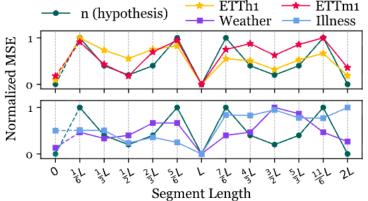


Figure 8: Forecasting performance of MAE w.r.t. varying segment length used in UVH imaging. n (green) estimates the difficulty of forecasting.

UVH imaging leads to LVM tending to "combine past cycles" prediction

RQ9: Can LVMs make effective use of look-back windows?

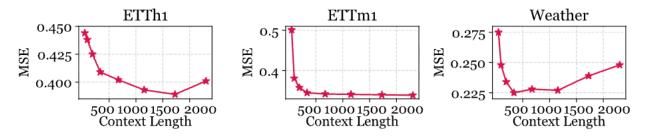


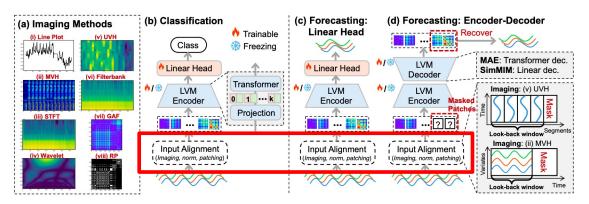
Figure 10: TSF performance (MSE) of MAE with varying look-back window (or context) lengths.

MAE prediction performance tends to stabilize as the window length increases to 1000, but too long windows may result in information loss due to image compression.

Summary Notes

When using vison models for time series analysis, several things are important:

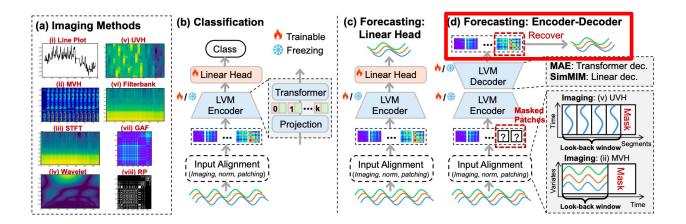
- Normalization: Targeted processing (controlling mean/std, instance normalization, removing outliers) is needed to fit visual model training characteristics.
- Image alignment: Adjust channels (1→3 via duplication/weight averaging) and size (interpolation) for pre-trained models, risking information loss.



Summary

When using vison models for time series analysis, several things are important:

 Temporal recovery: Recovering raw time series from predicted images: heatmaps and GAFs enable simple/accurate recovery; line plots require dedicated functions; spectrograms are underexplored; RPs are unsuitable due to information loss.



Future Work

- Enhance vision encoder for TSF (e.g., distillation), as decoders dominate TSF performance.
- Mitigate inductive bias from period-based imaging (e.g., UVH) for non-periodic data.
- Optimize time series imaging to resolve information density misalignment when mapping varying input steps to fixed-resolution images.
- Improve TSF performance via tailored components or new training paradigms.
- Reduce computational costs via compression or efficient attention.
- Explore multimodal TS analysis by integrating VLM Agents.

Outline

- 1 Background & Examples
- **2** Foundation of ST Data
- **3** Why Multimodal ST Data Fusion
- 4 Principle of ST Multimodal Fusion
- **5** Visual/Language Knowledge Transfer
- 6 Conclusions

ACM multimedia

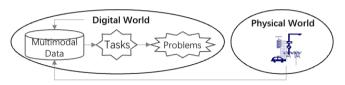
Dublin, Ireland 27-31.10.2025

ST Multimodal Learning is Future

 Current research on multimodal learning is mainly focus on solving problems in digital world (stage a & b), rarely stepping into the physical world (stage c).

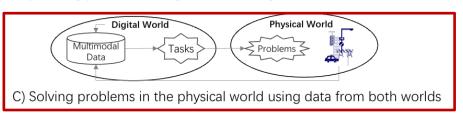
1) Daily Multimodal Apps, Image/Video Generation

A) Solving digital problems using data in the digital world



2) Motion-sensing Game, e.g. Switch

B) Solving problems in digital world using data from both worlds

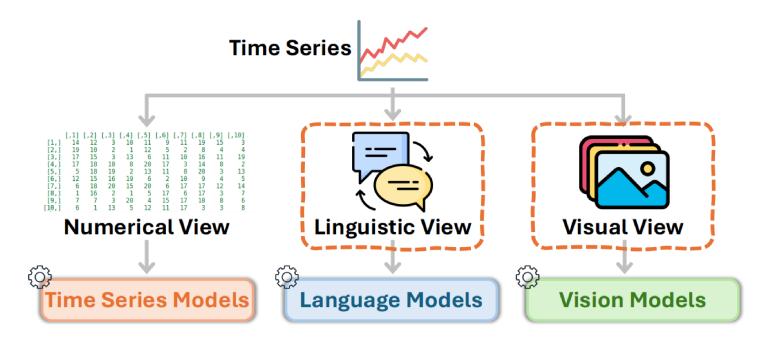


3) Real World Problems, e.g. AQI

Essential difference between multimodal ML in ST compared to the common multimodal.

ST Multimodal Learning is Future

Knowledge transfer across multi-domain is a promising direction.



Thank you!

Siru Zhong

- siruzhong@outlook.com
- https://siruzhong.github.io/

Yuxuan Liang

- yuxliang@outlook.com
- https://yuxuanliang.com/

